THE MAINE RIVERS FISH ASSEMBLAGE ASSESSMENT: APPLICATION TO THE PRESUMPSCOT RIVER IN 2006

Chris O. Yoder, Research Director
Lon E. Hersha, Research Associate
Center for Applied Bioassessment and Biocriteria
Midwest Biodiversity Institute
Columbus, OH

Edward T. Rankin, Senior Research Associate
Voinovich School for Leadership & Public Affairs
Ohio University
The Ridges
Athens, OH 45701
Three Linked Projects:

3. Regional EMAP – New England rivers assessment (2008-9); part based on NRSA probabilistic sites draw.
Maine Rivers Fish Assemblage Assessment:
Development of an Index of Biotic Integrity for Non-wadeable Rivers

March 8, 2009

Chris O. Yoder, Principal Investigator
Roger F. Thomsen, Senior Research Associate
Lon E. Hersha, Research Associate

Center for Applied Bioassessment & Biocriteria
Midwest Biodiversity Institute
P.O. Box 21561
Columbus, OH 43221-0561
mbi@mwbinh.com

Edward T. Rankin, Senior Research Associate
Ohio University
Voelnovich School for Leadership and Public Affairs
The Ridges, Building 22
Athens, OH 45701

Brandon H. Kudik and Bryan R. Apoll
Kleinschmidt Associates
75 Main Street
Pittsfield, ME 04967
Why Knowledge of the Fish Assemblage is Important

Current Issues:

- We used to say this just about Maine, but it applies to the rest of New England.

- Naturally Depauperate Fauna - cold water, coastal drainages - “how will these respond?”

- Assess Potential Conflicts with High Profile Restoration Goals - do non-native species pose an unintentional deterrent?
Kennebec River (2002–6)
- Wyman Dam to Merrymeeting Bay (30 sites, 2 test areas)
- Follow-up Waterville to Augusta (2002–6)

Androscoggin River (2003)
- Errol, NH to Merrymeeting Bay (51 sites)

Sebasticook River (2003)
- Douglas Pond to Winslow (9 sites)

- N. Br. To Hamden (40 sites); included W. Br., E. Br., 5 additional tributaries

Northern Maine Rivers (2005–6)
- St. John (14 sites), Allagash (8 sites), Aroostook (10 sites), St. Croix (12 sites)

Southern Maine Rivers (2006)
- Presumpscot R. (22 sites)
- Saco R. (32 sites)

Miscellaneous Maine Rivers (2007)
- Mattawamkeag R., Rapid R., Moose R., Moosehead Outlets, Dead R., E. Br. Penobscot (22 sites)
Sampling Methods

Standardized Approach:

- Pulsed D.C. boat electrofishing - effort indexed to distance
- Electrode array customized for Maine river conditions
- Intensive survey design - mainstem & non-wadeable tribs.
- Field water quality and habitat data
- July - September index period
• Sampling guided by a QAPP

• Standardized sampling to yield comparable data

• All representative habitat types within each site

• Geo-referenced sample site location and sample track

• Fish are identified to species, enumerated, and weighed

• DELT anomalies recorded
Logistics: Getting the Right Equipment to a Site
Key First Task - Understand Current Distribution of Riverine Fish Species:
Maine Rivers Fish Distribution Atlas
Cold Water Species: Non-Salmonids (Indigenous Natives)

- Common white sucker (adult life stage)
- Lake chub
- Slimy sculpin
- Burbot
Maine Rivers Fish Assemblage Assessment: 2002-7

Elevation Gradient
Introduced Species

Smallmouth bass (adult life stage)
(Introduced Naturalized c. 1870)
Maine Rivers Fish Assemblage Assessment: 2002-7

Physical barriers

Elevation Gradient

Thermal?
This parallels similar observations in Maine lakes.
Detailed autecology of known and potential species – 60 species recorded thus far in Maine's rivers
Tiered Aquatic Life Use Conceptual Model: Draft Biological Tiers

(10/22 draft)

The Biological Condition Gradient:
A conceptual model for interpreting detrimental change in aquatic ecosystems

Susan P. Davies and Susan K. Jackson
(Ecological Applications 16:4, 2006)

LOW ——— Human Disturbance Gradient ——— HIGH

Natural structural, functional, and taxonomic integrity is preserved.

Structure and function similar to natural community with some additional taxa & biomass; no or incidental anomalies; sensitive non-native taxa may be present; ecosystem level functions are fully maintained.

Tiered Aquatic Life Use Conceptual Model: Draft Biological Tiers

(10/22 draft)
Development of tools & methods to ascertain the status of native riverine fish assemblages is a major goal of this project.
Cold Water Assemblages

The “assumed baseline” for the Biological Condition Gradient applicable to Maine’s large rivers
Condition of the Biotic Community

Native inland freshwater & diadromous species (Atlantic salmon, alewife, American shad, American eel, brook trout, native cyprinids, white & longnose sucker)

Some native diadromous species are reduced in abundance; shifts towards intermediate tolerances and mesotherms; brook trout are reduced or replaced by non-native naturalized salmonid species.

Native diadromous species are rare or absent; tolerant species predominate and may become numerous (enrichment); species richness reduced in some cases.

Native diadromous species are absent or if present by interventions; some native cyprinids are absent, replaced by tolerant and moderately tolerant species;

Same as tier 1 except: non-native salmonid species with naturalized populations may co-occur with brook trout.

Some native diadromous species are rare or absent; moderately tolerant species predominate; brook trout are absent; non-native mesotherms & eurytherms present; anomalies present.

Native diadromous species are absent or if present by interventions; some native cyprinids are absent, replaced by tolerant and moderately tolerant species;

Same as tier 1 except: non-native salmonid species with naturalized populations may co-occur with brook trout.

brook trout are absent; non-native salmonids are non-reproducing; non-native eurytherms usually predominate; anomalies present.

Native diadromous species rare or absent; tolerant species predominate and may become numerous (enrichment); species richness reduced in some cases.

(toxic impacts); non-native eurytherms predominate; anomalies frequent.

LOW ——— Human Disturbance Gradient ———> HIGH
Guidelines for Deriving Regionally Relevant "IBI Type" Assessment Tools

- Karr et al. (1986) provides guidance for metric development, substitution, and modification. Requires detailed knowledge of the regional fauna including life history, taxonomy, zoogeography, and natural history.

- Requires an extensive database from consistent sampling of both reference condition and a gradient of human disturbance. Requires extensive testing of candidate metrics and aggregate indices.

- Process has been refined and "better quantified" by Hughes et al. (1998) and most recently by Whittier et al. (2007)

We retained the conceptual approach of Karr - making this "too mechanical" may have unintended consequences.

The primary project goal is the development of a fish IBI tailored to the Maine fish assemblage.
“Unique” Character of the Riverine Fish Fauna of Maine

- Post-glacial ingress defined “baseline” fauna
- Maine Rivers “constrained” to Gulf of Maine.
- One brief connection to St. Lawrence & none to Connecticut & western river basins.
- Several “warmwater” species common to this latitude in other regions are not indigenous (blackbass, pike, muskellunge, crappie).
“Traditional” IBI vs. Interim Maine IBI

“Traditional IBI Metrics:
1. Native species richness
2. Darter Species
3. Sucker Species
4. Sunfish Species
5. %Intolerant species
6. %Tolerant species
7. %Omnivores
8. %Insectivores
9. %Top carnivores
10. %Hybrids
11. %Diseased individuals
12. Number of individuals

Interim Maine IBI Metrics:
1. Indigenous species richness
2. Native cyprinids (less fallfish)
3. %Adult white/longnose biomass
4. %Blackbass
5. %Fluvial specialist/dependent
6. %Macrohabitat generalists
7. %Benthic insectivores
8. Temperature stenotherms
9. %Native salmonids
10. Non-guarding lithophils
11. %DELT anomalies
12. Non-indigenous species

*Metrics in white are “positive” * metrics in red are “negative”
Interim Maine Rivers IBI Metrics & Scoring

<table>
<thead>
<tr>
<th>Metric</th>
<th>Scoring Equation</th>
<th>Scoring Adjustments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native Species Richness</td>
<td>10 * (-0.2462 + (0.0828*numspec2))</td>
<td>Score = 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Score = 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td><3 sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>15 sp.</td>
</tr>
<tr>
<td>Native Cyprinid Species (excluding fallfish)</td>
<td>(10 * (0.4457 + (0.0109*allcyp_ff) - (0.00005629 * (allcyp_ff^2))))</td>
<td>Eq</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eq</td>
</tr>
<tr>
<td>Adult white & longnose sucker biomass</td>
<td>(10 * (0.3667 + (0.008*ws_ins_pb) - (0.000023592 * (ws_ins_pb^2))))</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>128 kg/km</td>
</tr>
<tr>
<td>%Native Salmonids</td>
<td>(10 * (0.9537 + (0.00000000039*nat_salm) - (0.000078892 * (nat_salm^2))))</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>20%</td>
</tr>
<tr>
<td>%Benthic Insectivores</td>
<td>10 * (0.010966*benth_pc_n)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>91.2%</td>
</tr>
<tr>
<td>%Blackbass</td>
<td>10 - (10 * (-0.09684 + (0.5638*log10(blackbass))))</td>
<td>Eq</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>%Fluvial Specialist/Dependent</td>
<td>(10 * (0.2775 + (0.0073*fluv_pc_n)))</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eq</td>
</tr>
<tr>
<td>%Macrohabitat Generalists</td>
<td>10 - (10 * (0.1017 + (0.0096*macro_gen)))</td>
<td>>90%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eq</td>
</tr>
<tr>
<td>Temperate Stenothermic Species</td>
<td>(10 * (0.7154 + (0.4047*(log10(steno)))))</td>
<td>0 sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>5 sp.</td>
</tr>
<tr>
<td>Non-guarding Lithophilic Species</td>
<td>(10 * (0.2979 + (0.8975*log10(lith_ng))))</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>10</td>
</tr>
<tr>
<td>Non-indigenous Species</td>
<td>10 - (10 * (0.1063 + (0.3271Non-indigenous_sp) - (0.029(Non-indigenous_sp^2))))</td>
<td>>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>%DELT Anomalies</td>
<td>10 - (10 * (0.8965 + (0.1074*log10(delta))))</td>
<td>Eq</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

1 No scoring adjustments are necessary; scoring determined by equation (Eq) across entire metric scoring range of 0-10.
Presumpscot River Study Area:
Aug.– Sept. 2006
May 2007
19 mainstem sites
3 tributary sites

Figure 2. The Presumpscot River study area in 2006 and 2007. Open symbols represent 2006 sampling locations; closed circles represent 2007 sampling locations. Major waterbodies and interstate highways are shown.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section – Heading/Subheadings</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary, Conclusions, and Recommendations</td>
<td>iv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>x</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xi</td>
</tr>
<tr>
<td>List of Plates</td>
<td>xiv</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xvi</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Maine Rivers Fish Assemblage Assessment</td>
<td>1</td>
</tr>
<tr>
<td>Presumpscot River Fish Assemblage Assessment</td>
<td>2</td>
</tr>
<tr>
<td>Background and Management Issues</td>
<td>3</td>
</tr>
<tr>
<td>Water Quality and Habitat Classifications</td>
<td>5</td>
</tr>
<tr>
<td>STUDY AREA DESCRIPTION</td>
<td>5</td>
</tr>
<tr>
<td>Natural Setting</td>
<td>5</td>
</tr>
<tr>
<td>Impacts and Alterations</td>
<td>7</td>
</tr>
<tr>
<td>METHODS</td>
<td>14</td>
</tr>
<tr>
<td>General Scope and Design</td>
<td>14</td>
</tr>
<tr>
<td>Equipment Specifications</td>
<td>14</td>
</tr>
<tr>
<td>Field Data Recording</td>
<td>16</td>
</tr>
<tr>
<td>Crew Composition and Logistics</td>
<td>18</td>
</tr>
<tr>
<td>Habitat Assessment</td>
<td>20</td>
</tr>
<tr>
<td>Sampling and Survey Design</td>
<td>21</td>
</tr>
<tr>
<td>Data Management and Analysis</td>
<td>22</td>
</tr>
</tbody>
</table>
- 28 fish species; 23 indigenous, 5 non-indigenous
- American eel most numerous (numbers & biomass)
- Median 7 species/site (4-15)
- Average 199 fish/km; 18.9 kg/km
- Tribs. produced more fish (523/km)
- Macrohabitat generalists > fluvial dependent/specialist species
Qualitative Habitat Evaluation Index Field Sheet

1) Substrate
(Check ONLY Two Substrate TYPE BOXES, Estimate % percent)

<table>
<thead>
<tr>
<th>TYPE</th>
<th>POOL</th>
<th>RIFFLE</th>
<th>POOL</th>
<th>RIFFLE</th>
<th>SUBSTRATE ORIGIN</th>
<th>SUBSTRATE QUALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>-BLDR/SILBS [10]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-LG BOULD [10]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-BOULDER [9]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-COSIBLE [6]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-HARDPAN [4]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-MUCK [2]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Substrate Quality

- SILT:
 - SILT HEAVY [2]
- LIMESTONE [1]
- Silt [1]
- TILLS [1]
- Silt Moderate [4]
- SILT NORMAL [2]
- SILT MODERATE [1]
- SILT FREE [1]

Embeddedness

- Extensive [2]

Max 20

Number of Substrate Types:

- 4 or More [2]
- 3 or Less [4]

(High Quality Only, Score 5 or >)

COMMENTS:

2) Instream Cover
(Give each cover type a score of 0 to 3; see back for instructions)

- UNDERCUT BANKS [1]
- POOLS > 70 cm [2]
- OXBOWS, BACKWATERS [1]
- OVERHANGING VEGETATION [1]
- SHALLOWS (IN SLOW WATER) [1]
-ishments [1]

AMOUNT: (Check ONLY one or check 2 and AVERAGE)

- Extensive > 75% [1]
- Moderate 25 - 75% [7]
- Sparse 5 - 25% [8]
- NEARLY ABSENT < 5% [1]

Max 20

COMMENTS:

3) Channel Morphology
(Check ONLY one PER Category OR check 2 and AVERAGE)

<table>
<thead>
<tr>
<th>SINUOSITY</th>
<th>DEVELOPMENT</th>
<th>CHANNELIZATION</th>
<th>STABILITY</th>
<th>MODIFICATIONS / OTHER</th>
<th>MODIFICATIONS / OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-IMPOUNDED [1]</td>
<td></td>
<td>-ONE SIDE CHANNEL MODIFICATIONS</td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS:

4) Riparian Zone and Bank Erosion
(check ONE box PER bank or check 2 and AVERAGE per bank)

Riparian Width

<table>
<thead>
<tr>
<th>L/R (Per Bank)</th>
<th>L/R (Most Predominant Per Bank)</th>
<th>L/R (Concentration Tillage)</th>
<th>L/R (Fenced Pasture)</th>
<th>L/R (Mining)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERY WIDE > 100m [5]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIDE > 50m [4]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODERATE 10 - 50m [3]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NARROW 5 - 10m [3]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VERY NARROW < 5m [1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NONE [0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS:
Table 5. QHEI matrix showing good and modified attributes at fish sampling locations in the Presumpscot River study area, 2006.

<table>
<thead>
<tr>
<th>River Mile</th>
<th>QHEI</th>
<th>Gradient (ft/mile)</th>
<th>Good Attributes</th>
<th>Modified Attributes</th>
<th>Total Modified Attributes</th>
<th>Modified: Good Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1</td>
<td>87.0</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>20.6</td>
<td>68.5</td>
<td>0.00</td>
<td>[filled squares]</td>
<td>[filled squares]</td>
<td>[filled squares]</td>
<td>4.00</td>
</tr>
<tr>
<td>19.9</td>
<td>87.0</td>
<td>0.00</td>
<td></td>
<td>[filled squares]</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>19.1</td>
<td>52.5</td>
<td>0.00</td>
<td></td>
<td>[filled squares]</td>
<td></td>
<td>3.75</td>
</tr>
<tr>
<td>18.8</td>
<td>54.0</td>
<td>0.00</td>
<td></td>
<td>[filled squares]</td>
<td></td>
<td>1.50</td>
</tr>
<tr>
<td>18.1</td>
<td>90.0</td>
<td>0.00</td>
<td></td>
<td>[filled squares]</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>15.0</td>
<td>55.0</td>
<td>0.00</td>
<td></td>
<td>[filled squares]</td>
<td></td>
<td>4.00</td>
</tr>
<tr>
<td>14.9</td>
<td>88.0</td>
<td>0.00</td>
<td></td>
<td>[filled squares]</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>12.6</td>
<td>81.5</td>
<td>0.00</td>
<td></td>
<td>[filled squares]</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>8.6</td>
<td>63.0</td>
<td>0.00</td>
<td></td>
<td>[filled squares]</td>
<td></td>
<td>4.00</td>
</tr>
<tr>
<td>7.6</td>
<td>66.0</td>
<td>0.00</td>
<td></td>
<td>[filled squares]</td>
<td></td>
<td>2.00</td>
</tr>
<tr>
<td>6.3</td>
<td>74.0</td>
<td>0.00</td>
<td></td>
<td>[filled squares]</td>
<td></td>
<td>1.11</td>
</tr>
<tr>
<td>5.5</td>
<td>52.0</td>
<td>0.00</td>
<td></td>
<td>[filled squares]</td>
<td></td>
<td>3.75</td>
</tr>
<tr>
<td>3.7</td>
<td>41.5</td>
<td>0.00</td>
<td></td>
<td>[filled squares]</td>
<td></td>
<td>2.67</td>
</tr>
</tbody>
</table>
QHEI: Number of Good Attributes

Riverine Impounded
Total Number of Species

Riverine - Species Richness

Impounded - Species Richness
INDEX OF Biotic Integrity (IBI)

Riverine - IBI

Impounded - IBI
Expectation for riverine fish assemblage

Riverine - %Macro-habitat Generalists

Impounded - %Macro-habitat Generalists
- Major wastewater discharges: Westbrook WWTP – 4.5 MGD; SAPPI – 12.5 MGD process, 12 MGD cooling.
- Visual evidence of impacts beyond permit terms & conditions
- Suspected organic enrichment & possibly thermal impacts in lower mainstem
- Maine DEP cumulative effects assessment targeted in part to this finding
Diadromous restoration rivers - are key BCG attributes missing?
Current Improvements to the Interim Maine Rivers IBI

- Diadromous species are not included except indirectly via other metrics.
- Developed a set of diadromous metrics that include: #diadromous species; log rel. no. American eel; log rel. no. Clupeidae; log rel. no. Diadromous fish.
- Additive to “core” IBI - does not “penalize” rivers that do not have diadromous fish.
- Continuing data collection in lower Kennebec & Sebasticook R.
Presumpscot River Fish Assemblage Conclusions

- Fish assemblage reflects hydromodifications (impoundment & flow).
- Few sites attain BCG tier IV (minimum CWA goal).
- Anadromous species restricted to lower 7-8 miles of mainstem.
- Localized areas of “pollution” impacts - need to perform stressor diagnosis.
- Intensity of hydromodification “overwhelms” riverine characteristics - will not be resolved by fish passage alone.