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1. EXECUTIVE SUMMARY AND PRIMARY FINDINGS

Starting in May 2007, BioDiversity Research Institute (BRI) and collaborators initiated a broad-
based contaminant study on Maine birds, measuring both historical and emerging chemicals. This
comprehensive project measured 192 synthetic contaminants in 23 species across Maine to
determine in which species, habitats, and locations these anthropogenic compounds are
concentrating. The compounds we analyzed in 60 egg composites were mercury (Hg),
polychlorinated biphenyls (PCB), polybrominated diphenyl ethers (PBDE), perfluorinated
compounds (PFCs), and organochlorine pesticides (OCs). Our preliminary findings are:

e Hg, PCBs, PBDEs, PFCs, and OCs are found in all species sampled across marine,
estuarine, riverine, lacustrine (lake), and terrestrial ecosystems; these are the first records
of PFCs in Maine birds.

e Hg, PCBs, PFCs are all found at levels that may cause adverse effects—there are
currently no established adverse effects thresholds established for PBDE:s in bird eggs.
OCs are all significantly below adverse effects thresholds.

e Our Hg, PCB, and OC levels were generally consistent with levels recorded around the
country. Certain species had PBDEs higher than other locations, while other species had
lower levels. PFOS have not been widely studied in eggs; therefore, we could not directly
compare our results to other areas.

e The total PCBs levels we recorded are lower than those in the past, indicating a continued
decline in PCBs.

e Bald eagles have the highest overall contaminant load of the 23 species measured.

®*  We found all of the compounds across the entire state, but overall contaminant loading
tends to be highest in southern coastal Maine. This geographic pattern suggests that
these compounds are entering the environment both through atmospheric
deposition, because they are found across the entire state, and through local point
sources, because we detected higher levels in urban and industrial areas.

* PCBs, PBDEs, PFCs, and OCs levels are positively correlated, indicting that birds with
high levels of one compound tend to have higher levels of the others. PBDEs and PCB
have the strongest relationship.

e Birds that feed on terrestrial prey accumulated higher brominated PBDEs; DecaBDE is
found in eight species with gulls and peregrine falcon having the highest levels.

e Of the samples we analyzed, birds feeding in estuaries have the lowest contaminant
levels.

e The mouth of the Kennebec and Isles of Shoals tended to have high concentrations of
contaminants.
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2. INTRODUCTION

2.1 Project overview

Starting in May 2007, BioDiversity Research Institute (BRI) and collaborators initiated a
broad-based contaminant study on Maine birds, measuring both historical and emerging
chemicals. This comprehensive project measured 192 synthetic contaminants in 23
species across Maine to determine in which species, habitats, and locations these
anthropogenic compounds are concentrating. The chemicals we analyzed in 60 egg
composites were mercury, polychlorinated biphenyl (PCB) congeners, polybrominated
diphenyl ether (PBDE) congeners, perfluorinated compounds (PFCs; e.g., PFOS,
PFOSA, PFHxS, PFOA, PENA, PFDA, PFDoDA, PFUnDA, PFHxA, PFHpA), and
organochlorine pesticides (OCs) (DDTs, HCHs, chlordanes, HCB).

The project had two components. The first was evaluating geographic differences by
analyzing eggs of seven marine species from six sites near the outflows of Maine’s
largest rivers (Figure 1). Since studies indicate that levels of PCBs and other organics in eagles
are higher along the coast than inland (Matz 1998), and contaminants bioaccumulate’ in
coastal cormorants (Mower 2006), terns, and plovers (Mierzykowski and Carr 2004), we
focused geographic contaminant screening along the coast. We selected sites near the
largest river outflows and areas of high population density. The sites were: 1) Isles of
Shoals (Piscataqua River, Kittery); 2) Casco Bay (Portland); 3) Popham Beach and
Sheepscot Bay (Androscoggin, Kennebec, and Sheepscot rivers, Phippsburg); 4)
Penobscot Bay (Penobscot River, Islesboro); and 5) Cobscook Bay (St. Croix River,
Eastport) (Figure 1, Table 2).

We evaluated geographic variation in freshwater ecosystems with common loon and bald
eagle eggs (Figure 1). The species we selected have a broad range of foraging strategies
and represent most of Maine’s primary ecosystems.

The second component evaluated exposure in major habitat types through analyzing eggs
from multiple species in the same area. In the Portland, Maine area we collected eggs
from marine, estuarine, riverine, lake, and terrestrial habitats, focusing on high trophic?
level predators (Figure 2). Species include insectivores, piscivores, and bird and mammal
predators. Additionally, to ensure direct comparison among habitats, we collected eggs
from tree swallows—a low trophic level insectivore. Collectively, this sampling effort
provided a baseline and initial screening of contaminant levels, and helped determine if
contaminants are concentrating in certain areas.

! Increase in an organism over time because they take in more than they can expel.
2 How high in the food web a bird eats (i.e. eagles are high trophic level and eiders are low).
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2.2 Chemical Interaction

Researchers have studied the effects of many of the contaminants analyzed in this study
on behavior, reproductive success, organ function, and acute toxicity. However, a number
of studies have also attempted to determine if multiple compounds interact to create
physiological effects greater than their sum. Researchers found that organochlorine
pesticides can interact with each other to create either an additive or synergistic effect
(Blus 2003). Epidemiological studies on human children (Grandjean et al. 2001, Stewart
et al. 2003, Roegge et al. 2004), and laboratory studies on animals (Bemis and Seegal
1999, Costa et al. 2007) indicate that PCBs and methylmercury may act synergistically or
additively. Additionally, researchers have found that PCB 52 can interact with PBDE 99
to enhance neurobehavioral defects in mice (Eriksson et al. 2006) . These studies
suggests that many of the compounds analyzed in this study can interact to create an
effect greater than one contaminant alone.

2.3 Review of compounds measured

2.3.1 Hg

Mercury is a naturally occurring heavy metal that has been mobilized into the
environment by anthropogenic activities. Due to its unique properties, mercury is used in
many products such as thermostats and dental fillings. It is also used in mining, and is
released to the environment through the combustion of fossil fuels.

Generally attributed to anthropogenic input (Lockhart et al. 1998), mercury (Hg) levels in
the North Atlantic have doubled over the last 100 years (Asmund and Nielsen 2000) and
are increasing by nearly 1.5% a year (Slemr and Langer 1992) with peak levels in Maine
recorded after 1970 (Perry et al. 2005). This historical increase has been documented in
North Atlantic seabirds (Thompson and Furness 1992, Monteiro and Furness 1997),
Canadian Arctic seabirds (Braune 2007) with local Hg deposition causing high rates of
increase in biota (Frederick et al. 2004, Evers et al. 2007). This increase of global Hg
levels since the 1900s is of concern because mercury is a persistent toxic heavy metal that
both bioaccumulates and biomagnifies® in wildlife, and has neurological and reproductive
impacts (Wolfe et al. 2007).

Researchers have documented Hg in the Maine sediment (Perry et al. 2005), water
(Dennis et al. 2005), crayfish (Pennuto et al. 2005), fish (Kamman et al. 2005),
salamanders (Bank et al. 2005), birds (Evers et al. 2005), and mammals (Yates et al.
2005). In addition Hg hot spots have been documented in Maine (Evers et al. 2007).

* Builds up exponentially when one organism eats another.

10
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2.3.2 PCBs

Polychlorinated biphenyls (PCBs) are synthetic chlorinated aromatic hydrocarbons that
were first created in 1881; between 1930 and 1975 680 million kilograms were
manufactured in the United States (Hoffman et al. 1996). Because of PCBs unique
chemical properties they were used in a many industrial processes such as heat transfer
agents, lubricants, dielectric agents, flame retardants, plasticizers, water proofing
material, and most notably for cooling in electrical transformers (Hoffman et al. 1996).
They are resistant to chemical breakdown, and have high thermal stability, low vapor
pressure, flammability, and solubility (Niimi 1996). PCBs consist of two benzene
(phenyl) rings connected by a carbon bond to which chlorine atoms are connected. The
number of chlorine atoms provide the base for the 209 PCB congeners (Rice et al. 2003).

Originating from industrial leaks, sewage runoff, landfills, and incinerators, researchers
have detected PCBs worldwide in the atmosphere, water, fish, birds, mammals, and
humans (Hoffman et al 1996). Because of PCBs chemical structure, they are extremely
persistent in the environment and resist being broken down by bacteria or chemicals.
However, PCBs are easily absorbed into the fat of plankton and enter the wood web
(Hoffman et al 1996) and are eventually consumed by wildlife and humans.

In wildlife, PCBs both bioaccumulate and biomagnify. Piscivorous (fish eating) birds are
most exposed to PCBs, and eagles and other top trophic level predators are particularly
vulnerable to accumulating elevated levels. PCBs are extremely toxic to biota, causing
wasting, immune effects, reduced reproduction, and liver damage (Hoffman et al 1996).
In birds PCBs reduce egg hatchability, increase liver size, and affect thyroid and spleen
function (Hoffman et al 1996). Researchers have observed similar effects in mammals
with PCBs reducing reproductive success, and at high levels can lead to death (Kamrin
and Ringer 1996). Because of these known effects, PCBs were banned in the United
States in 1979 (Rice et al. 2003). Today in Maine PCBs are still widely detected in
wildlife. They have been detected in mussels (Chase et al. 2001), seabirds, shorebirds
(Mierzykowski and Carr 2004), eagle (Matz 1998), porpoise (Westgate et al. 1997),
dolphin, and pilot whale (Weisbrod et al. 2001).

2.3.3 PBDEs

Polybrominated diphenyl ethers (PBDEs) are brominated flame retardants that are used in
both commercial and residential textiles and electronics. They work by slowing
combustion by releasing hydrogen bromide gas, which interferes with the chemical
reaction that spreads fire (Janssen 2005). PBDEs consist of two benzene rings linked by
an oxygen atom and can have up to ten attached bromine atoms (Hellstrom 2000). This
stable structure causes the molecules to be lipophilic (fat loving) and consequently
subject to bioaccumulation (Karlsson et al. 2006). The three primary types of PBDEs are
penta-BDE, octa-BDE, and deca-BDE. Penta has been primarily used in polyurethane
foam (up to 30% in weight) that is used in couches, carpets, and mattresses; octa is used
in computer monitor plastics; and deca, which makes up 83% of global PBDE

11
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production, is used in electronic equipment (Johnson-Restrepo et al. 2005). Deca-BDE is
an off-white crystalline powder that is usually 10-15% of the weight of the host material
and is an additive flame retardant that does not chemically bond to its host material.
Consequently, deca-BDE migrates into the environment (DEP 2007). PBDE:s enter the
environment through atmosphere deposition, wastewater treatment facilities, and runoff
(Anderson and MacRae 2006).

PBDEs are found globally in humans, wildlife, and the environment. They have been
found in whales, Tasmanian devils, fish, and falcons in Australia (Symons et al. 2004);
terns in San Francisco Bay (She et al. 2004); guillemots in the Baltic Sea (Sellstrom et al.
2003); peregrine falcons in Sweden (Sellstrom et al. 2001); marine fish in Florida
(Johnson-Restrepo et al. 2005); seabirds in Norway (Murvoll 2006); birds of prey in
Belgium (Voorspoels et al. 2004); birds of prey in China (Chen et al. 2007); fish in
Maine’s Penobscot River (Anderson and MacRae 2006); and Arctic fox in Greenland and
Russia (Lifgren 2005).

Laboratory studies have documented health effects of PBDEs, generally at levels higher
than currently observed in the environment. Rats fed penta-BDE had reduced growth,
diarrhea, reduced activity, tremors, red stained eye edges, and chewed continuously.
Those animals that received repeated doses had changes in hepatic and thyroid size and
histology as well as immunological effects. Rats fed octa-BDE had enlarged livers, and
fetuses with bent ribs, limp bones, and rear limb malformations. Although health effects
were observed at higher doses, animals dosed with deca-BDE had enlarged livers, and
hyaline degeneration in kidneys. Those fed deca-BDE for 103 weeks at high doses
developed tumors as well as an increase in thyroid, hepatic and pancreatic adenomas
(Darnerud 2003). A dosing study on kestrels found changes in thyroid levels and
concludes: “Concentrations of PBDE congeners in wild birds may alter thyroid hormone
and vitamin A concentrations, glutathione metabolism and oxidative stress (Fernie et al.
2005).” Because of these effects, penta and octa were voluntarily phased out in 2004
(EPA website), and deca was partially banned in Maine and Washington State in 2007.

2.34 PFCs

Perflorinated chemicals (PFCs) have been produced for over 50 years for their repellant
properties and are used as stain repelents, cleaning agents, floor polish, fire-fighting
foam, and in photography (Tao et al. 2006). Most commonly used PFCs are derived from
perfluorooctanesulfonyl fluoride (POSF), which have extremely strong carbon-fluorine
bonds. These strong bonds make the PFCs highly resistant to environmental and
metabolic degradation (Butenhoff et al. 2006) and are consequently environmentally
persistent (Kannan et al. 2002). Of the PFC congeners, perfluorooctanesulfonate (PFOS)
and perfluorooctanoate (PFOA) are of greatest concern because of their global abundance
and bioaccumulation (Giesy and Kannan 2001, Kannan et al. 2002, and Tao et al. 2006).

Annual estimated production of POSF in 2000 was greater than 5000 tons (Tao et al.
2006), but by 2002 the 3M Company—the primary manufacture of POSF—discontinued

12
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production (Butenhoff et al. 2006). However, some PFOS is still produced outside of the
United States for applications where there are no alternatives (Butenhoff et al. 2006) and
other PFC are still produced and used in the United States (Kannan pers. com.). PECs are
transported in the environment through ocean currents and the atmospheric circulation
(Toa et al. 2006) and may enter the environment through similar pathways as PBDEs.

Although there has been no analysis of PFCs in Maine, they have been documented in
wildlife in the Southern Ocean and Antarctica (Toa et, 2006), Artic, North America,
Pacific Ocean, Japan, Europe (Giesy and Kannan 2002), seaotters in California (Kannan
et al. 2006), birds in Japan and Korea (Kannan et al. 2002), and in fish and pelicans in
Columbia (Olivero-Verbel et al. 2006).

PFOS are documented to have health effects in wildlife. Hen eggs injected with PFOS
had significantly lower hatching success (Molina et al. 2006). Quail exposed to PFOS
through diet had increased liver weight and, at high levels, died (Newsted et al. 2007). In
California, diseased sea otters were positively associated with elevated PFOS levels
(Kannan et al. 2006).

2.3.5 OCs

Organochlorine pesticides (OCs) are used primarily for insect control, are extremely
persistent in the environment, and bioaccumulate in wildlife (Blus 2003). The five major
groups are dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexane (HCH),
cyclodienes, toxephene, and chlordecone.

2.3.6 HCH

Hexachlorocyclohexane (HCH) is an insecticide that is currently used in agriculture—the
most wildly used form is lindane. Unlike other OCs pesticides, lindane has a short half-
life and rapidly degrades after use. Consequently, lindane is rarely found in wildlife.
However, in some laboratory studies lindane has reduced hatching success, increased
embryo mortality, and caused egg shell thinning in chickens. In other studies researchers
documented little effects (Blus 2003).

2.3.7 HCB

Hexachlorobenzene (HCB) is a fungicide used most commonly on seed grains, is an
industrial waste product, and is used in the manufacture of tire rubber (Wiemeyer 1996).
HCB is persistent in the environment and experimental studies have documented death
and significant effects in birds. Quail fed high doses of HCB had weight loss, ruffling of
feathers, and tremors. Birds fed a lower does had reduced hatchability of eggs and sterile
eggs (Wiemeyer 1996).
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2.3.8 Chlordane

Chlordane is composed of number of OCs and has been used since the 1940s (Blus
2003). In 1978 most chlordane was restricted in the United States; all chlordanes are now
banned (Wiemeyer 1996). The most toxic metabolite is oxychlordane (Wiemeyer 1996).
In the past chlordane was used extensively on lawns, golf courses, and crops, and is
persistent in the environment. The most measured effect in experimental settings is death.
As recently as 1997 over 400 birds died from eating beetles with high chlordane residues
in an area that had been treated in the past (Blus 2003).

2.3.9 DDT

Dichlorodiphenyltrichloroethane (DDT) was first synthesized in 1874, used as an
insecticide in 1939, used extensively in agriculture after World War II (Blus 1996), and
banned in the United States in 1972 (Blus 2003). Despite the well-documented effects on
wildlife, DDT is still used in a number of countries. After application DDT breaks down
to DDE. DDE has been well documented to cause egg shell thinning, which causes eggs
to break during incubation. Because of the persistent nature of DDE, it is still widely
detected in birds although at levels generally below effects thresholds (Blus 2003).

2.4 Birds as bioindicators of the environmental contaminants

Birds are commonly used as indicators of Hg and other contaminants in the environment
(Scheuhammer 1987, Furness and Camphuysen 1997, Wolfe et al. 1998, Cifuentes et al.
2003, Braune 2007, Evers et al. 2005, and Sheuhammer et al. 2007, and Wolfe et al.
2007). The species we selected for this contaminant screening represent distinct foraging
guilds and ecosystems across Maine. Additionally, some of the species we selected are
high trophic level predators that may accumulate contaminants at higher levels. In total
the 23 species of birds in our study indicate the contaminants other biota, and people—
through consuming fish and game—may be exposed to.

2.5 Eggs as indicators of local contaminants

Eggs are used extensively for contaminant studies (Wiemeyer 1996, Kannan et al. 2001,
Braune et al. 2002, Evers et al. 2003, and Braune 2007) because female birds depurate
lipophilic contaminants into their eggs. For most species, all of the egg nutrients are
allocated from exogenous (i.e. recent dietary uptake) rather than endogenous (reserves
acquired during migration and on winter grounds) sources (Bond et al. 2007, Hobson
2006, Hobson et al. 2000, and Hobson et al. 1997). Consequently, egg contaminant
residues represent the contaminants present in the bird’s breeding territory diet (Hobson
et. al 1997). These findings are supported by Evers et al. (2003), which found a strong
relationship between common loon egg Hg levels and female Hg blood levels (blood
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represents recent dietary uptake). The exception is species that arrive on the breeding
ground and immediately lay eggs (Hobson 2006). The species in our study are all present
at their breeding site for at least two weeks prior to laying eggs (Table 1). Therefore, the
results presented in this report represent contaminant levels of the birds within their
foraging range during the breeding season in Maine.

2.6 Species selected for this study

2.6.1 Tree swallows (multiple habitats)

In order to be able to directly compare contaminant levels between habitats, we collected
swallow eggs from birds nesting in the marine, estuarine, lacustrine (lake), and terrestrial
environments. We were not able to collect samples from a river. Although we only
analyzed one composite per habitat, each composite represented multiple clutches. Tree
swallows feed on flying insects (Robertson et al. 1992) close to their nesting boxes and
feed at a low trophic level; therefore, they act as a bioindicators of their nesting habitat.

2.6.2 Marine

In order to seek geographic variation along the coast, we analyzed eggs of eight species
of seabirds at six locations at multiple trophic levels. Below is a description of the habitat
each species represents.

¢ Herring gulls are scavengers (Perotti and Good 1994) and will be exposed to
contaminants through multiple sources such as invertebrates, fish, birds, small
mammals, and garbage. Therefore, they act as bioindicators of multiple coastal
habitats.

¢ Double-crested cormorants are piscivores and forage on mid-water and benthic
fish 3-40cm long (Hatch and Weseloh 1999). These fish tend to be highly mobile,
consequently cormorants act as bioindicators of a broad coastal region (Goodale
et al. 2007).

¢ Common eiders feed primarily on mollusks (Goudie et al. 2002) and in Maine
feed extensively on blue mussels. Therefore, eiders act as bioindicators of the
contaminants that mussels are accumulating through filter feeding.

e Leach’s storm-petrel feed 100-200km offshore (Huntington et al. 1996) and feed
primarily on mesopelagic fish and crustaceans (Watanuki 1985, Hedd and
Montevecchi 2006). Since storm-petrels feed in the offshore food web, their
contaminant levels reflect a global signal rather than one influenced by point
sources (Goodale et al. 2007). Therefore, storm-petrels act as bioindicators of
global contaminant levels.
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Black guillemot provide a contaminant signal of benthic dwelling biota because
they feed primarily on rock gunnels (a small fish) in the Gulf of Maine (Preston
1968, Hayes 1993, and Bulter and Buckley 2002). Since guillemots feed close to
their breeding colony and rock gunnels have low mobility during the summer
(Vallis et al. 2007), they indicate contaminants close to their breeding colony.
Therefore, guillemots act as bioindicators of the coastal benthic system.

Terns feeding on small fish and invertebrates close to the ocean surface (Hatch
2002, Nisbet 2002, Thompson et al. 1997) which tend to be mobile. Therefore,
they act as bioindicators of the coast as a whole, but at a lower trophic level than
cormorants.

Atlantic puffin provide a mid-trophic level signal as they feed on larger fish than
the terns but smaller than cormorants (Lowther et al. 2002). Therefore, they act as
bioindicators at a mid-trophic level.

Piping plovers are not a seabird, but they feed on invertebrates in the intertidal
zone (Haig 2004) along Maine beaches. Therefore, they act as bioindicators of
Maine’s beaches.

Osprey provide a similar signal to many of the seabirds along the coast. They feed

on live fish (Poole et al. 2002) on the surface by plunging into the water.
Therefore, they act as a similar bioindicator as cormorants, but for raptors.

Estuarine

We focused on one estuary, Scarborough Marsh. Within this estuary, in addition to tree
swallows, we collected samples from four species: Virginia rail, willet, glossy ibis, and
snowy egret. Collectively these species provide an indication of bioaccumulation in
estuarine invertebrates.

Virginia rail feed on aquatic invertebrates (Conway 1995).
Willets on insects, invertebrates, and fish (Lowther et al. 2001).

Glossy ibis also feed on invertebrates (Davis and Krichner 2002), but likely at a
higher trophic level than the rail and willet.

Snowy egret have greater variety in their diet and, in addition to invertebrates,
feed on fish, amphibians, and reptiles (Parsons and Master 2000).
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2.6.4 Riverine
From rivers we collected eggs from kingfishers and eagles.
¢ Kingfisher feed on small fish (Hamas 1994) by plunging into the water. They
build their nests by burrowing into river banks (Albano 2002) and feed in the
adjacent river. Consequently, they provide a direct contaminant signal of the river
where they are nesting.
¢ Bald eagles are scavengers and have a varied diet of fish, birds, and mammals, but
when nesting close to rivers will feed primarily on fish. They feed on larger fish
than kingfishers and consequently are indicators of a higher trophic level.

2.6.5 Lacustrine (lake)

From lakes, in addition to tree swallows, we collected samples from red-winged
blackbirds, loons, and eagles.

¢ Blackbirds provide a contaminant signal of insects (Yasukawa and Searcy 1995)
along the lake edges.

® Loons provide a signal of mid-sized fish, and eagles mid-sized fish, birds, and
mammals that are associated with lakes.
2.6.6 Terrestrial
In addition to tree swallows, we collected samples from peregrine falcons and American
kestrels for the terrestrial environment. Together these species provide a terrestrial

contaminant signal at two trophic levels.

e Kestrels feed at a lower trophic level than peregrines, feeding primarily on
terrestrial arthropods and small vertebrates (Smallwood and Bird 2002).

¢ Peregrines feed on birds (White et al. 2002) and in the area that we collected
samples, many of these prey birds feed in the terrestrial environment.
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3. METHODS

3.1 Field

We collected viable and nonviable three-egg composites and single eggs from each
species (Table 2). Species scientific names are displayed in Table 2. Members of Gulf of
Maine Seabird Contaminant Network (GOMSCAN)* collected seabird eggs from remote
seabird islands, and BRI staff collected the additional samples. In the field eggs were
handled with polyethylene gloves, placed whole in polyethylene bags, and placed in
chemically clean jars, and frozen. The eggs were sent with dry ice to the Wadsworth
Center (New York State Department of Health) for analysis (see below for methods).
Whole egg was analyzed. BRI currently has state and federal collection permits.

3.2  Statistics

We performed statistics with JMP (SAS Institute Inc., 2001). Each egg composite was
treated as a sample size of one. We logl0 transformed the data to increase normality and
homoscedasticity. We tested for interaction between habitat and species: we found no
interaction for all compounds, indicating that we could independently test for habitat
differences.

We sought spatial trends by mapping contaminant levels in eight species where we had
three samples or more. The species we mapped were: herring gull, double-crested
cormorant, common eider, black guillemot, piping plover, common loon, osprey, and
bald eagle. The range of each contaminant was displayed in three categories determined
by natural breaks within the contaminant range for each species. Trends were evaluated
qualitatively.

3.3 Egg morphometric measurements

An hand-held caliper, capable of recording the 0.1 of a mm was used to determine the
length and width. The egg length was measured from tip to tip of the egg. The width was
measured from the widest point of the egg. A digital balance capable of weighing to the
0.1 of a gram was used to measure weight of the eggs with shell (whole egg) and without
shell (content weight). Graduated measuring cylinders with Milli-Q water was used to
determine the volume of eggs, determined as the volume of water displaced (recorded in
ml). Developmental stage of the eggs were recorded as a ranking of the developmental
stage of the embryo. An embryological development scale used for common loon and

* GOMSCAN is comprised of researchers from U.S. Fish and Wildlife Service, Maine Department of
Inland Fisheries and Wildlife, National Audubon, Maine Coast Island National Wildlife Refuge, Shoals
Marine Lab, and Canadian Wildlife Service. This group is currently preparing a paper for publication on
seabird mercury levels in the Gulf of Maine.
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waterfowl eggs was used to assess the developmental stage and ranked as NA,
0,1,2,3,4,and 5 as below:

NA (not assessable): Developmental stage could not be determined. Contents were gray
or yellowish-tan in color and typically had a foul smell. A darker color suggested some
degree of development had occurred, whereas a yellow homogeneous liquid may be
sifted through and if no dark spots or hardened areas were found we classified the egg as
infertile (0).

0: No development was evident. Egg had a yellow/orange or yellow/tan yolk (intact
or broken down into a liquid). A translucent jelly-like mass surrounded the yolk sac and
showed no sign of embryonic development (e.g. mass not dark or hardened).

1: Embryo was viable (length was up to 1.5 cm). The jelly like mass (embryo) was
dense and hardened. Small dark (red) eyespots may be visible at this stage.

2: Developing embryo (length was 1.5 — 2.0) has an apparent central nervous
system. Cranial development and visible eyes are apparent. Feathers are absent.
3: The embryo shows advanced development (length was 2-3 cm). Bill was

developed (e.g. egg tooth present but soft). Legs and wings were visible but not fully
developed. Some feathers were present (first seen in tail).

4: The fully developed embryo was completely covered by feathers. Appendages
were completely developed. Vent, preen gland was visible. A small portion of yolk sac
remained attached to belly.

3.4 Analysis of egg moisture and lipid contents

After the determination of morphometric parameters on each of the eggs, some samples
collected from the same location and same species were pooled and homogenized using a
homogenizer and composites were prepared. The composites were used the analysis of
trace organic contaminants and mercury. Homogenized egg samples (in most cases 10-
11 g; for some samples only 5 g was used due to the availability) were extracted with
dichloromethane and hexane (1:3; 400 mL) in a Soxhlet apparatus for 16 h after spiking
the samples with surrogate standards (PCB-30 and PCB204). The extracts were
concentrated to 10 mL and 1 ml of the aliquot was taken for the analysis of lipid content
by gravimetry. An aliquot of the egg homogenate (approximately 2 g) was also taken and
freeze-dried to measure the moisture content.

3.5 Analysis of PCBs, PBDEs and organochlorine pesticides

Details of the analytical methods have been described elsewhere (Kannan et al., 2005;
2007). An aliquot of the sample extract was spiked with °C-labeled PCB congeners 3,
15, 31, 52, 118, 153, 180, 194, 206, 209, and ““C-labeled PBDE congeners 3, 15, 28, 47,
99, 100, 118, and 153 as internal standards. PCB congeners 30 (2,4,6-triCB) and 204
(2,2°,3,4,4°,5,6,6’-octaCB) were spiked as surrogate standards. The sample extracts was
then purified by passage through a series of layers of silica gel (Davisil, 100-200 mesh,
Aldrich, WI; 1 g of silica gel, 2 g of 40% acidic-silica gel, 2 g of 20% acidic-silica gel,
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and 1 g of silica gel at the top). The analytes were then eluted using 150 mL of 20%
dichloromethane in hexane. The extracts were then concentrated using a rotary
evaporator and treated with sulfuric acid (5 mL) and further concentrated to 1 mL for the
analysis of PCBs and PBDEs. Another portion of the extract was passed through silica
gel (2 g) by elution with 20% dichloromethane in hexane; it was then treated with
sulfuric acid, for the analysis of organochlorine pesticides.

Extracts were injected into a gas chromatograph (Hewlett-Packed 6890) coupled with a
mass-selective detector (Hewlett-Packed, series 5973) for the determination of PCBs and
PBDEs. A capillary column coated with RTX-5MS (30 m x 0.25 mm i.d. x 0.25 pm
film thickness; Restek Corp, Bellefonte, PA) was used for the separation of individual
isomers. The column oven temperature was programmed from 100°C (1 min) to 160°C
(3 min) at a rate of 4°C/min, and then to 250°C at 3°C/min, with a final hold time of 5
min for PCBs. For PBDEs, the column temperature was programmed from 100 °C (1
min) to 160°C (3 min) at a rate of 10°C/min, and then to 260°C at 2°C/min, with a final
hold time of 5 min. The MS was operated in an electron impact (70 V), selected ion
monitoring mode. An equivalent mixture of Kanechlor (KC300, 400, 500, and 600) with
known PCB composition was used in the identification of PCB congeners. One hundred
and fifty four isomers of PCBs with 35 coleuting pairs (ITUPAC number in the order of
GC-MS elution: 4+10, 9+7, 6, 548, 19, 18, 17, 15, 24+27,16+32 ,26,25,28+31,
20+33+53, 22, 36, 37, 54, 50,53,51,45, 52+73, 46+69, 49+43, 47+48+75, 44, 59+42,
41464, 40+57, 67, 63, 74+61, 70+76, 66+80, 60+56, 77, 104, 98+102, 93+95, 91, 92, 84,
90+101+89, 99, 86+97, 97+113, 87+117+125+116+111+115, 85+120, 110, 82, 124, 107,
118+106, 114+122, 105+127, 126, 155, 136, 151, 135+144, 149+139, 134, 133,
146+161, 153, 132+168, 141, 137, 130, 138+164+163, 158, 129, 128, 167, 156, 157,
169, 188, 179, 176, 178, 187+182, 183, 185, 174, 177, 171, 173, 172+192, 180, 193, 191,
170, 190, 189, 202, 201, 197, 200, 198, 199, 196+203, 195, 194, 205, 208, 207, 206, and
209), including mono-ortho PCB congeners (105, 118, 189) were analyzed.
Quantification of PCB congeners was based on external calibration standards containing
known concentrations of di- through deca-CB congeners. Concentrations of individually
resolved peaks of PCB isomers were summed to obtain total PCB concentrations. PBDE
congeners were monitored at molecular ion clusters, [M]" and [M+2]" or [M+4]". Tri-
through hexa-PBDE congeners analyzed in this study were 28, 30, 47, 66, 85, 99, 100,
138, 153, and 154 were targeted for analysis. Hepta- through deca-BDE congeners (183,
203, and 209) were analyzed using a Agilent Technologies 6890N gas chromatograph-
electron capture detector (GC-ECD). PBDE congeners were quantified using an external
calibration standard. Organochlorine pesticides were analyzed using a Agilent
Technologies 6890N gas chromatograph-electron capture detector (GC-ECD; for HCH
isomers) and a gas chromatograph (Hewlett-Packed 6890) coupled with a mass-selective
detector (Hewlett-Packed, series 5973) for DDTs, chlordanes and HCB. A capillary
column coated with DB-5 (30 m x 0.25 mm i.d. x 0.25 pm film thickness) was used for
the separation of pesticides. Concentrations were calculated from the peak area of the
sample to that of the corresponding external standard. DDTs refers to the sum of p,p’-
DDE, p,p’-DDT and p,p’-DDD; chlordanes to the sum of cis-chlordane, cis-nonachlor,
trans-nonachlor, and oxychlordane; HCHs to the sum of a-,3-, and y-isomers. PCB and
PBDE congeners are represented by their [UPAC numbers.
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3.6 PCB and PBDE quality assurance and quality control

The extraction, clean-up, and fractionation steps were evaluated by measurement of the
absolute recoveries of the compounds spiked and passed through the entire analytical
procedure. Mean (+ standard deviation) recoveries of >C-labeled PCB congeners #30,
118, 153, and 194 spiked into the samples were 80 + 14%, 82 + 17%, 89 + 12%, and 91 *
14%, respectively. Recoveries of surrogate PCB congeners CB-30 and CB-204 spiked
into the egg samples prior to extraction were 72+10%. Mean (+ standard deviation)
recoveries of *C-labeled PBDE congeners 28 and 47 were 92 + 14% and 91 + 14%,
respectively. Overall recoveries of PBDEs ranged from 82 to 103%. The reported
concentrations of PCBs, PBDEs and pesticides were corrected for the recoveries of
surrogate standards (CB-30 and CB-204). Recoveries of organochlorine pesticides
through the analytical procedure ranged from 85 to 110%. Procedural blanks were
analyzed for every set of 10 samples, as a check for interferences. Calculated
concentrations were reported as below the limit of detection, if either the observed
isotope ratio was not within +20% of the theoretical-ratio, or the peak area was not
greater than the specified threshold (3 times the noise). Known concentrations of PCBs,
PBDEs, and organochlorine pesticides were spiked into selected samples (matrix spikes)
and passed through the entire analytical procedures to calculate the recoveries.
Recoveries of all of the target compounds spiked into egg matrixes were between 84 and
106% with a standard deviation of <15%. The quantitation limits of individual PBDE
congeners varied from 10 to 500 pg/g, wet wt. The quantitation limit for organochlorine
pesticides varied from 50 to 1000 pg/g, wet wt.

3.7 Analysis of perfluorinated compounds:

Potassium salts of PFOS (86.4%), PFOA (98%), PFOSA (95%), PFHxS (99.9%), and
PFBS (99%) were provided by the 3M Company (St. Paul, MN). PEFHpA, PENA, PFDA,
and PFUnDA were from Fluorochem Ltd (>95% purity, Derbyshire, UK). '*C4-PFOS,
C4-PFOA (99% purity, Wellington Laboratories, Guelph, ON, Canada), '*C4-PFNA and
13C4-PFDA were used as internal standards and were spiked into egg samples prior to the
addition of reagents for extraction.

PFCs in eggs were analyzed following the method described elsewhere (Tao et al., 2007).
Egg homogenates (0.3-0.5 g) were taken in 15-mL polypropylene (PP) tubes and 5 ng of
internal standards (**C4-PFOS, *C4-PFOA, "°C,-PFDA, and ’C,-PFNA), 2 mL of 0.25
M sodium carbonate buffer, and 1 mL of 0.5 M tetrabutylammonium hydrogensulfate
solution (adjusted to pH 10) were mixed. Sample was then extracted with 5 mL of
methyl-tert-butyl ether (MTBE) by shaking vigorously for 45 min. The MTBE layer was
separated by centrifugation at 3500 rpm for 5 min and then transferred into another PP
tube. The extraction was repeated twice with another 3 mL of MTBE. The MTBE extract
was combined and evaporated to near-dryness under a gentle stream of nitrogen and then
reconstituted with 1 mL of methanol. The sample was vortexed for 30 sec and filtered
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through a 0.2-um nylon filter into an autosampler vial. Matrix-matched calibration
standards (seven points ranging from 0.5 ng/mL to 75 ng/mL) were prepared by spiking
different amounts of calibration standards into a sample that contained no quantifiable
amount of the target analytes; these standards were passed through the entire analytical
procedure along with the samples.

Analytes were detected and quantified using an Agilent 1100 series high-performance
liquid chromatography (HPLC) coupled with an Applied Biosystems API 2000
electrospray triple-quadrupole mass spectrometer (ESI-MS/MS). Ten microliters of the
extract were injected onto a 50 x 2 mm (5 um) Keystone Betasil® C18 column. The
mobile phase was 2 mM ammonium acetate/methanol starting at 10% methanol, at a flow
rate of 300 uL/min. The gradient increased to 100% methanol at 10 min and was held for
2 min, and then reversed back to 10% methanol. The MS/MS was operated in
electrospray negative ion mode. Target compounds were determined by multiple reaction
monitoring (MRM). The MRM transitions were 299>80 for PFBS, 399>80 for PFHS,
499599 for PFOS, 503>99 for *C4-PFOS, 599599 for PFDS, 498>78 for PFOSA,
363>169 for PFHpA, 369>169 for PFOA, 372>172 for B3C4PFOA, 463>219 for
PFNA, 513>219 for PFDA, 563>169 for PFUnDA, and 613>169 for PFDoDA.
Samples were injected twice, to monitor sulfonates and carboxylates separately, and
PFBS was monitored in both of the injections. A mid-point calibration standard was
injected after every 10 samples to check for the instrumental response and drift.
Calibration standards were injected daily before and after the analysis.

The egg samples were quantified with the quadratic regression fit analysis weighted by
1/x of a matrix-extracted calibration curve. The limit of quantitation (LOQ) was
determined as the lowest acceptable standard in the calibration curve that is defined as a
standard within £30% of the theoretical value, and that has a peak area twice as great as
the analyte peak area in blanks. LOQs for PFCs were 0.28 to 0.6 ng/g, wet wt, except for
PFDS and PFBS, for which the LOQs were 0.94 and 1.12 ng/g, wet wt, respectively.

3.8 PFC guality assurance and quality control

Matrix spikes (6 egg composites) were performed for egg samples. Known amounts of
mixed PFC standards (20 ng each) were spiked into sample matrices before extraction
and were passed through the entire analytical procedure. Recoveries of PFCs spiked into
egg homogenates and passed through the entire analytical procedure are shown in Table
3. The recoveries of all the PFCs were acceptable except for PFBS, which had a low
recovery; however, PFBS does not bioaccumulate in tissues and also had not been
detected in biological samples. Four 13C-labeled internal standards were spiked into all
samples before the extraction, and the recoveries of internal standards are also shown in
Table 3. Reported concentrations of PFCs in egg samples were not corrected for the
recoveries of internal standards. Blanks were analyzed by passing Milli-Q water and
reagents through the whole analytical procedure. Blanks contained trace levels of PFOA
(<100 pg). Reported concentrations for PFOA in egg samples were subtracted from the
mean blank values. A midpoint calibration standard was injected after every 10 samples
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to check for instrumental stability, response and drift. Calibration standards were injected
daily before and after the analysis.

3.9 Mercury analysis

Egg composites were freeze-dried and homogenized; an aliquot (~0.1 g) of the sample
was weighed in a vial lined with Teflon®. Samples were digested overnight in
concentrated nitric acid (2 mL). Samples were then further digested in a microwave oven
for 7 min at 200 W; this step was repeated three times. Concentrations of Hg were
determined by a cold vapor atomic absorption spectrometer (Model HG-3000; Sanso,
Tsukuba, Japan). The limit of quantification was 50 ng/g, dry wt. Accuracy of the
analysis was examined by analyzing Certified Reference Materials: dogfish muscle
(DORM2; National Research Council, Ottawa, ON, Canada) and bovine liver
(SRM1577b; National Institute of Standards and Technology, Gaithersburg, MD, USA)
along with the samples. The overall analytical scheme used for the analysis of egg
samples is shown in Figure 3.
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4. RESULTS AND DISCUSSION

4.1 Relationship between compounds (Figure 4. Figure 5)

We found that PCBs, PBDEs, chlordane, and DDE all significantly increase
simultaneously (p < 0.0001). This finding indicates that birds with high PCB levels also
tend to have high PBDE, chlordane, and DDE levels. This is consistent in studies
conducted with OCs, which show that the pesticides are positively correlated in animal
tissue (Blus 2003). This is of particular interest because in mice PCBs and PBDEs are
demonstrated to interact, and together, at low doses can enhance developmental
neurobehavioral defects (Eriksson et al. 2006). Additionally, researchers have also found
that organochlorine pesticides (both DDE and chlordane are OCs) interact (Blus 2003).

The simultaneous increase in these compounds may be caused by a number of factors,
including the similar chemical structure of PCBs and PBDEs, and their similar pattern of
bioaccumulation. PCBs, PBDEs, and DDE are all composed of two benzene rings, but in
PCBs the benzene rings are connected with a carbon bond, while in PBDEs there is an
oxygen atom. PBDEs have attached bromine atoms, while PCBs have attached chlorines.
This similar structure may mean that they move through the environment in a similar
pattern.

PCBs and OCs have been extensively studied (Hoffman et al. 1996, Wiemeyer 1996,
Blus 2003), but only recently have PBDEs been studied in wildlife. The positive
relationship between these compounds suggests that species and geographic areas that
have been documented to have high PCB levels may also have elevated PBDEs.

Although not as strongly correlated, we also found a significant relationship between

PFOS and PBDE and PCB and PFOS. This indicates that as PCB and PBDE levels
increase, that PFOS levels also tend to increase.

4.2 Total Contaminants (Figure 6)

By combining the ranks (e.g. the species with the lowest PCB levels receives a rank of
“1” while the highest receives a rank of “23”) of the major contaminant groups (Hg, total
PCB, total PBDE, PFOS, total chlordane, HCB, and DDE, PFOS) for all species we are
able to determine which species have the highest contaminant load overall. Bald eagle
have the highest or second highest level in almost all contaminants. Note: this method of
ranking does not account for the relative level of the contaminants (e.g. eagles in many
cases had contaminant levels multiple times higher than other species).

As expected, high trophic level predators have the highest levels (bald eagle, peregrine
falcon, great black-backed gull), while species specializing on invertebrates (Virginia
rail, willet) and mollusks (common eider) have the lowest levels. However, two species
do not fall into expected levels, specifically: belted kingfisher and piping plover.
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Belted kingfisher may have higher than expected levels because their eggs (from to two
nests) were collected from an industrialized Presumscot River (Portland). This river
potentially has point source pollution as well as higher atmospheric deposition rates than
other sites because of its proximity to Portland and a municipal incinerator.

The reason for the elevated contaminants in piping plover is not clear. Like willets and
Virginia rails, plovers feed on small invertebrates in the intertidal zone. However, in
contrast to the plovers, these two species consistently have some of the lowest
contaminant levels. The plovers may be feeding upon large or higher trophic level
invertebrates than the other invertivores, and from mud flats that may have higher
pollution levels. Note: although plovers ranked fifth overall, in general their contaminant
loads are four to six times lower than the species with the highest levels.

4.3 Hg (Figure 7)

4.3.1 Comparison to known effects thresholds

Four samples are close to or above the known effects threshold of 1.3 pg/g (ww, ppm)
(Evers et al. 2003, Evers et al. 2007a). Two loon eggs from northwestern Maine are close
to or significantly above this threshold—Aziscohos Reservoir, 1.26 pg/g, and Flagstaff,
3.32 ug/g—and one egg from Long Pond in Acadia National Park, 1.55 pg/g. The eggs
from Aziscohos and Flagstaff were collected at sites known to have high Hg levels (BRI
unpublished data) and in an area documented as a mercury hotspot (Evers et al. 2007b).
Salamanders Hg levels are higher than other sites in Acadia National Park (Banks et al.
2005). One eagle sample from a fresh water lake is close to the effects threshold, 1.20

ue/g.

4.3.2 Comparison with other studies

Our results are consistent with other studies (levels from other studies are bold and in
brackets). Common loon eggs consistently have the highest Hg levels in multi-species
studies (Evers et al. 2005). However, our mean 1.4 ng/g, is higher than the regional mean
[0.78 ug/g (ww)(Evers et al. 2005)]; this is the result of sampling at areas known to be
high. We collected samples at these sites to determine if other contaminants would also
be elevated. Our eagle mean, 0.67 pg/g, is also slightly above the regional mean [0.45
peg/g (ww)(Evers et al. 2005)].

The seabird results are also consistent with those established for the Gulf of Maine. Black
guillemot and Leach’s storm petrel consistently have the highest level among seabirds in
Maine (Goodale et al. 2007). The storm-petrel Hg level we recorded, 0.60 ug/g, is close
to the Gulf of Maine mean [0.62 pg/g (Goodale et al. 2007)]. The mean guillemot Hg
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levels we recorded, 0.69 pg/g, are slightly higher than those of the region [0.52 pg/g
(Goodale et al. 2007)].

Other species also have Hg levels consistent with regional means. Our results compare to
other studies as follow: common tern in our study, 0.02 pg/g [0.13 pug/g (Goodale et al.
2007)]; piping plover in our study, 0.23 pg/g [0.17 pg/g (fww) (Mierzykowski et al.
2003)]; least tern in our study, 0.16 ug/g [0.12 pg/g (Evers et al. 2005)]; osprey in our
study 0.18 ug/g, [0.19 pg/g (Evers et al. 2005)]; and tree swallow in our study 0.11 pg/g
[0.19 pg/g (Evers et al. 2005)].

4.3.3 Spatial Variation (Figure 19)

Mercury accumulates in the environment in hot spots, influenced by deposition patterns,
watershed chemistry, food web dynamics, reservoirs, and point sources (Evers et al.
2007). Our results are consistent with this pattern. As discussed above, the two elevated
Hg levels in loons in northwestern Maine are in an established hot spot (Evers et al.
2007). The high levels in Isles of Shoals are consistent with other studies (Goodale et al.
2007) and are likely influenced by the Piscataqua River and proximity to deposition from
southern New England. The elevated levels in mid-coast Maine—Penobscot Bay, Mount
Desert Island—are also associated with an area of concern for high Hg availability (Evers
et al. 2007). The elevated levels are due in part to the former HoltraChem plant, which
dumped Hg into the Penobscot River. The moderate levels in Cobscook Bay may be
influenced by being downstream from a Hg area of concern (Evers et al. 2007). Although
not consistent across species, piping plover, herring gull, and common eider all have
higher levels at the mouth of the Kennebec. However, cormorants and osprey levels are
low at this site.

4.3.4 Habitat (Figure 26)

Our data demonstrated Hg levels are highest in lakes and lowest in estuaries. We
observed this trend both in the over all data set (ANOVA Tukey HSD, F = 8.5, df =4, 53,
p <0.0001) and in the tree swallow data. This trend is also observed with the eagle data:
marine < riverine < lake.

Evers et al. (2005) found a similar trend, with eagle and belted kingfisher data
demonstrating that lakes had the greatest Hg availability. They attribute the higher Hg
levels in lakes to the presence of sulfur reducing bacteria, which methylates elemental Hg
(convert inorganic Hg to an organic form that enters the food web), and the dilution in
marine, estuarine, and riverine environments.
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44 PCB (Figure 8)

4.4.1 Comparison to known effects thresholds

The effects of PCBs on wildlife have been well studied (Blus 2003). Studies on bird eggs
have shown chickens are particularly sensitive to total PCB levels and can show effects at
1,000-5,000 ng/g (ww) (Hoffman et al. 1996). In the field, total PCB levels have shown
effects ranging from 8,000 — 20,000 ng/g in terns and other species (Hoffman et al 1996).
Our results indicate that the eagle egg collected on the coast may have PCB levels high
enough to cause effects. Osprey, herring and great black-backed gulls, peregrine falcon,
and common loon all have PCB levels between 1,000 and 5,000 ng/g (ww). Past studies
indicate that these species may have a higher threshold for effects of PCBs (Welch, 1994,
Matz 1998, Hoffman et al. 1996), and may not experience effects at the levels we
detected. However, the PCB congeners that dominated the samples are not considered the
most toxic (Figure 14 &15). Most species total PCBs are dominated by the following co-
elutes: 153/132/168, 138/164/163/158, and 180. The exceptions were Virginia Rail and
willet. We did not test for 81, 126, or 169. However, we did find 77 in 27 of the
composites (ranging from 0.16 — 1.82 ng/g ww), with osprey from Bug Light in Portland
(1.82), bald eagle (1.35) from Quakish Lake in T3 Indian Purchase, and piping plover
(1.15) from Popham Beach in Phippsburg having the highest levels.

Piping plovers at two sites, Ferry Beach (Saco) and Popham Beach (Phippsburg), also
have PCB levels greater than 1,000 and may be more sensitive to contaminants. Although
effects thresholds have not been determined for piping plovers, a study conducted on a
close relative, snowy plovers, indicates that contaminants could be among a number of
stressors leading to the decline of least terns and snowy plovers (Hothem and Powell
2000). The authors did conclude, however, that the levels they recorded were not
sufficiently elevated to cause concern. The level they recorded for total PCBs (330 —
2,360 ng/g, ww) in snowy plover are similar to our results.

4.4.2 Comparison with other studies

Our total PCB, 2,810-11,138 ng/g (ww), are lower than those detected in eagles in Maine
between 1994-1996 (levels from other studies are bold and in brackets) [330-45,398 ng/g
(fww)(Matz 1998)], but similar to levels detected along the Penobcot River, Maine
[6,230 — 11,410 ng/g (fww)(Mierzykowski and Carr 2002)]. However, our results
indicate that eagles in Maine have higher levels than those in British Columbia [1,108 —
7,140 ng/g (ww) Elliot et al. 1996)]. Our total PCBs in osprey ranged from 501-2,666
ng/g, which is slightly lower than levels observed in New Jersey osprey in 1998 [1,090-
4,450 ng/g (Clark et al. 2001)].

Our seabird results are similar to those detected in Maine by Mierzykowski and Carr

(2004) [560 ng/g (fww) in piping plovers, 560 in common terns, and 430 in least
tern]. We found the piping plover range is 160-1,876 ng/g (ww), the common tern level
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183, and the least tern level 263. Our double-crested cormorant results 1,403-2,413 are
within the range reported in neotropic cormorants in Texas [464-5,720 ng/g (ww) (Frank
et al. 2001)].

Our results indicate that PCB levels in Maine have decreased since 1977. Szaro et al.
(1979) found the mean total PCB in common eiders in 1977 was 1,600 ng/g (ww); our
means is 217 ng/g. Similarly, in herring gull eggs they found a mean of 7,760 ng/g (ww)
on Appledore Island; we also collected herring gull eggs on Appledore and found 1,176
ng/g (ww) in a three-egg composite. These results are consistent with other studies that
have found a decrease in PCBs over time (Williams et al. 1995, Clark et al. 2001, Braune
2007).

4.4.3 Spatial variation (Figure 20)

Spatially, PCBs are distributed across Maine in a similar pattern as PBDEs, PFOS, and
HCB. Generally, for the species for which we had more than three samples, highest levels
are in the southern coastal region of the state. This trend is likely caused by the greater
level of development along the coast and in the southern portion of the state. It also may
reflect contaminants being transported to the coast through developed rivers.

Across species there are several locations that are consistently high. Isles of Shoals
herring gull, cormorant, and eider PCB levels tended to be higher than other areas. This
may be the result of the contaminants coming from the Piscataqua River, Portsmouth, and
Kittery. Additionally, this area may have greater atmosphere deposition from southern
New England. Similarly, the mouth of the Kennebec River tended to have higher PCB
levels in eider, osprey, herring gull, cormorant, and plover. The mouth of the Kennebec
drains Merrymeeting Bay, which is at the confluence of both the Androscoggin and
Kennebec rivers, and consequently may be where contaminants are being concentrated.
Another site with consistently high PCB levels is Seal Island in Penobscot Bay. The
higher levels on this island may be the result of the island being used as a bombing range
in the past.

4.4.4 Habitat (Figure 26)

Overall the dataset show little variation between habitats. Estuaries have significantly
lower PCB levels than marine habitat (ANOVA Tukey HSD, F =34, df =4,55,p =
0.0147). The tree swallow results showed little variation between habitats, although lake
levels are the highest. However, the eagle samples show that the egg from a marine nest
has PCB levels more than three times greater than the river and lake samples. This is
consistent with eagle studies in Maine which have found significantly higher PCB levels
in coastal eagles (Welch, 1994, Matz 1998)
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4.5 PBDEs (Figure 9)

4.5.1 Comparison to known effects thresholds

Laboratory study in kestrels found negative physiological effects in chicks that had 1,500
ng/g total PBDE injected into their egg and were fed 100 ng/g per day (Fernie et al.
2005). Our egg total PBDE residues, ranging 3-782 ng/g, are not as high as the kestrel
dosing study. Consequently, we do not know if the levels we recorded are having a
negative effect.

4.5.2 Comparison with other studies

The range of our results is not consistent with other studies (levels from other studies are
bold and in brackets). With some species our levels are significantly higher than other
studies, while others are lower. Our black-guillemot results, 50 ng/g (ww), are
significantly higher than guillemots eggs in Greenland [2.5 ng/g (ww) (Vorkamp et al.
2004)], and higher than PBDEs in Brunnich’s guillemot in Norway [27 ng/g (ww)
(Murvoll 2006)]. Contaminants in yolk have greater concentrations than whole eggs. In
our study we analyzed whole egg.

Our herring gulls results, 234 ng/g (ww), are higher than the slightly larger glaucous gull
(Larus hyperboreus) in Norway [52.9 ng/g, ww (Verreault et al. 2004)], but lower than
herring gull eggs from the Great Lakes [662 ng/g, (ww) (Norstom et al. 2002)]. Our tern
results, however, on a lipid weight basis are an order of magnitude lower than tern
samples from San Francisco Bay, an area that has recorded some of the highest PBDE
levels in women in the world (She et al. 2004). Our eider results, 5.82 ng/g (ww), are
higher than those in egg yolk in Norway [0.4 ng/g (ww)(Murvoll 2006)]. Our cormorants
results, 31.12 ng/g (ww), are similar to European shag (Phalacrocorax aristotelis) in
Norway [17 ng/g (ww, yolk)], and double-crested cormorant in British Columbia (Elliot
et al. 2005). Our Leach storm-petrel results, 13.35 ng/g (ww), are slightly higher than
those in British Columbia [3.38 ng/g (ww) (Elliot et al. 2005)].

Elliot et al. (2005) reports that osprey PBDE levels have risen from 7.84 & 18.4 in 1991
to 162 & 185 ng/g (ww) in 2000. Our osprey results are nearly identical, 185 ng/g (ww),
to Elliot et al. 2000 levels, and similar to Norwegian osprey [103 ng/g (ww) (Herzke et
al. 2005)]. Our peregrine falcon level, 149.06 ng/g (ww) are also consistent with
Norwegian [155 ng/g (ww) (Herzke et al. 2005)], and Swedish peregrines (Sellstrom et
al. 2004), but were generally lower than southern New England (Chen et al. 2007).
However, our bald eagle levels trended higher, 440.10 ng/g (ww) than white-tailed sea
eagle in Norway [184 ng/g (ww) (Herzke et al. 2005)], but were consistent with eggs
analyzed in Maine [mean 577 ng/g (ww), range 226-952 (USFWS unpublished data)].
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4.5.3 Spatial variation (Figure 21)

PBDE:s are distributed across Maine in a similar pattern as PCBs and PFOS, tending to be
higher in coastal Maine between Mount Desert Island and Isles of Shoals. Penobscot Bay
in particular has higher levels in osprey, guillemot, and eider. These higher levels likely
reflect PBDEs that are transported down the Penobscot River. Another area of generally
higher levels is the Portland Area. This pattern is expected, because PBDE can be
transported into the environment from atmospheric deposition, in household dust,
incinerators, and water treatment facilities. Like many of the other contaminants, Isles of
Shoals PBDE levels are higher than other locations for reasons describes above.
Additionally, like PCBs the loon egg from Aziscohos Lake (western Maine) has higher
PBDE levels, possibly the result of historical dumping.

4.5.4 Habitat (Figure 26)

Overall there are no statistical differences between habitats (ANOVA, F=2.3, df =4,

55, p = 0.06). However, estuaries are lower than marine habitats and the kingfisher and
eagle residues from riverine habitat tended to be higher than the other habitats. Generally,
the tree swallow data showed little variation between habitats, although the terrestrial
birds tended to have higher levels.

4.5.5 Congener patterns (Figure 16, 17)

Although BDE 47, 99, 100 made up the majority of the samples for most species, there is
great variation in the pattern from species to species. This indicates that PBDEs may be
entering environment, dispersing, and bioaccumulating in different patterns between food
webs and habitats. Research has demonstrated that bacteria can cause deca to breakdown
into the more toxic lower brominated congeners (He et al. 2006); consequently the levels
of tetra- and octa-BDE that we recorded may have originated from deca.

Terrestrial predators have a dramatically different congener patterns than the other
habitats. Specifically, BDE47 composed a lower percentage of the samples while the
higher brominated congeners 196, 197, 207, and 209 have a higher percentage. The
terrestrial samples are composed of peregrine falcon, American kestrel, and tree swallow.
This shows conclusively that higher brominated congeners can bioaccumulate in wildlife.

4.6 PEC (Figure 10)

4.6.1 Comparison to known effects thresholds

PFCs have only recently been identified as a persistent bioaccumulative contaminant of
concern. Consequently, few studies have been conducted on effects in bird eggs.
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However, a study that injected perfluorooctane sulfonate (PFOS) in white leghomn
chicken eggs—known to be particularly sensitive to contaminants—determined, based on
reduced hatchability, that the lowest-observed adverse-effects level (LOAEL) was 0.1
ug/g or 100 ng/g (ww). The species we studied may be either more or less sensitive than
the chickens.

Twenty-three of our composite samples have PFOS values above the LOAEL of 100 ng/g
(ww) including the following species: Atlantic puffin, bald eagle, belted kingfisher,
common eider, common loon, double-crested cormorant, great black-backed gull, osprey,
peregrine falcon, piping plover, and tree swallow. Two samples are considerably higher
than the rest: eagle, 710.53 ng/g (ww) and kingfisher, 954.76 ng/g (ww).

4.6.2 Comparison with other studies

Only one study looked specifically at PFOS in bird eggs and our results are comparable
(Ievels from other studies are bold and in brackets) to double-crested cormorants in the
Great Lake region [157 ng/g (ww), yolk] and ring-billed gull [67 ng/g (ww, yolk)
(Kannan et al. 2001)]. As noted above (section 4.5.2) whole egg contaminant levels are
lower than yolk levels. In our study, cormorants have a mean PFOS level of 126.13 ng/g,
herring gulls 40.66, and great black-backed gulls 78.68.

Kannan et al. (2001) screened the livers of many of the same species as we did in our
study. Liver generally has higher contaminant levels than eggs in organochlorines
(Mason et al. 1997), in DDE (Norstrom et al. 1986), and in Hg (Evers et al. 2005), but
liver and egg have similar PCB levels (Hoffman et al. 1996). Kannan et al. (2002) liver
results compare to our eggs as follows: eagles in our study 103.82-710.53 [24-648 ng/g,
ww], in loons 30.90-186.06 [8.6-595], in cormorants 96.59-177.95 [51-288], in great
black-backed gull 46.19 - 111.18 [187-608], in osprey 60.27-441.18 [42-959], in herring
gull 11.67-95.65 [16-353], and snowy egret 88.50 [43]. Although the liver and egg values
cannot be directly compared, the overlap between our values and the liver results,
indicate that Maine PFOS levels are similar to other locations in the U.S., and potentially
that our results are higher than other locations.

Our results also are higher or comparable to PFOS in liver of fulmar (Fulmarus glacialis)
in the Faroe Islands [24 ng/g (ww) (Bossi et al. 2005)]; shorebirds, seabirds, waterfowl,
and raptors in Japan [10-650 ng/g (ww) (Kannan et al. 2002)]; pelicans in Columbia,
[36.65 ng/g (ww) (Oliver-Verbal et al. 2006)1; and sea otter on California [<1 — 884
ng/g (ww) (Kannan et al. 2006)].

4.6.3 Spatial variation (Figure 22)
Similar to PCBs, PBDEs, and HCBs, PFOS tend to be higher in southern coastal Maine.

As with the other compounds the mouth of the Kennebec has higher levels in herring
gull, cormorant, eider, osprey, and piping plover. Similarly, the Portland area and Isles of
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Shoals have relatively higher levels for reasons described above. Also similar to PCBs
and PBDEs, we detected high PFOS in the coastal eagle egg (only second to the
kingfisher sample).

4.6.4 Habitat (Figure 26)

Like other compounds, the estuary has statistically significantly lower PFOS than other
habitats (ANOVA, Tukey HSD, F = 2.43, df = 4, 59, p = 0.058). Similar to the PBDE
findings, the riverine habitat has the highest levels, which are driven by the belted
kingfisher and eagle results. The kingfisher eggs collected from the Presumscot River
have the highest levels recorded in this study, and are high compared to other studies (see
above). Proximity to urban development and industrial areas may causes these higher
PFOS levels. The tree swallow data showed a variation between habitats: terrestrial is the
highest, while estuary is the lowest.

4.6.5 Congener patterns (Figure 18)

Initially we have focused on PFOS because research has documented that this congener
bioaccumulates (Kannan et al. 2002). Our results indicate that for most species greater
than 50% of total PFC are comprised of PFOS. Arctic and common tern and common
loon deviated from this pattern and have a greater portion of PFUnDA. These differences
suggest that PFCs may be inputted into the environment through different mechanisms
(i.e. atmosphere deposition, point source).

4.7 Organochlorine pesticides (Figure 11, 12, 13)

4.7.1 Comparison to known effects thresholds

Although the OCs tested are present in all species (except HCH), the samples are well
below known effects thresholds. HCH are not detected in any samples. This is consistent
with other studies that have not detected HCH, because it has a short half-life (Blus
2003).

Our HCB residues range for all species is 0.75 — 20.33 ng/g (ww), which is significantly
below the effects threshold of 35,000 ng/g (ww) (Wiemeyer 1996). Our chlordane
residues range for all species is 1.81 —259.51 ng/g (ww), which is significantly below the
effects threshold of 2,000 ng/g (ww) (Blus 2003). Our DDE residues range for all species
is 9.91 — 2,072.44 ng/g (ww), which is significantly below the effects threshold of 3,000 -
30,000 ng/g (ww) (Blus 2003); however, studies indicate that slight egg shell thinning is
possible at lower levels. Depending on the species, no eggshell thinning is seen below
100 to 2000 ng/g (Blus 1996).
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4.7.2 Comparison with other studies

The levels of OC measured in our study are generally in the range detected in other
studies (levels from other studies are bold and in brackets). Our HCB and DDE levels in
piping plover, least tern, and common tern are nearly identical to residues detected in
these species in a 2003 Maine study (Mierzykowski and Carr 2004). Our HCB levels are
similar to those of British Columbia bald eagles [1-25 ng/g, ww (Elliot et al. 1996)]. Our
chlordane and DDE residues are at similar or below levels recorded in Arctic seabirds
(Braune et al. 2002, Braune 2007) and our chlordane Norwegian birds of prey (Herzke et
al. 2002). The DDE levels of New Jersey osprey are higher than our osprey findings [930
ng/g ww], but comparable to our eagle and peregrine falcon levels (Clark et al. 2001).
Bald eagle eggs in British Columbia from 1990-92 have higher mean DDE levels [2,170
to 5,140] as well as higher chlordane residues than our eagle samples (Elliot et al. 1996).

4.7.3 Spatial variation (Figure 23, 24, 25)

Although not consistent amongst all species, coastal Maine—from Kittery to Penobscot
Bay—generally have higher HCB, chlordane, and DDE levels than the rest of the state.
HCB levels showed a strong trend towards higher levels between Casco Bay and Mount
Desert Island. This trend may be caused by the major river flowages transporting
historical chemical into the marine system in the more developed portion of Maine. This
area may also receive higher levels of atmospheric deposition than other areas in Maine.

4.7.4 Habitat (Figure 26)

Marine birds have significantly higher HCB levels than estuarine birds (ANOVA, Tukey
HSD, F =3.1; df, 4, 55, p = 0.02, Figure 18); there is no difference between the other
habitats. This trend is followed with the tree swallow results although the lake habitat has
the highest levels. The reason for this trend is not clear.

Riverine birds have significant higher chlordane levels than marine birds (ANOVA,
Tukey HSD, F = 3.4; df, 4, 55, p = 0.01, Figure 18); there is no difference between the
other habitats. Since we were unable to collect riverine tree swallow samples we cannot
directly compare to the overall results. However, marine swallows did have the lowest
chlordane residues. The riverine samples are dominated by belted kingfisher and bald
eagle samples. The birds may be exposed to higher chlordane levels because chlordane
residues are still present in terrestrial environments and continue to wash into rivers. The
higher levels in terrestrial birds supports this supposition.

Riverine birds have significantly higher DDE residues than estuarine birds (ANOVA,
Tukey HSD, F = 2.8; df, 4, 55, p = 0.03, Figure 18); there is no difference between the
other habitats. Since we were unable to collect riverine tree swallow samples we cannot
directly compatre to the overall results. However, like chlordane, DDE may still be bound
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up in soils and be leaching into riverine systems. The higher levels in terrestrial birds
support this supposition.

4.8 Portland area break out (Figure 27)

By collecting multiple species within the same area, we are able to gain insight into
bioaccumulation and various pathways through which the contaminants are entering the
environment. A clear trend for all of the contaminants is that the higher trophic level
predators such as peregrine falcon, common loon, great black-backed gull, and osprey
tend to have higher levels than the other species. However, the species with the highest
levels are not uniform across the different contaminates. Since the birds have different
foraging strategies, these differences provide insight into contaminant sources.

4.8.1 Hg

As stated above, our results are consistent with known patterns of Hg availability. The
top trophic level predators such as loons, which forage exclusively in the lacustrine
(lakes) ecosystem, have the highest Hg levels. This is consistent with studies that show
higher rates of methylation in freshwater systems because they provide ideal habitat for
sulfur reducing bacteria. An interesting finding is that piping plovers have similar Hg
levels to osprey and cormorants.

482 PCB

Matz (1998) and Welch (1994) found that coastal eagles had higher PCB levels than birds
feeding from rivers and lakes. The samples from Portland also follow this pattern. Of the
species sampled, those feeding in the marine system have higher levels than those on
lakes and rivers. The one exception is peregrine falcon, which also has higher levels; this
is likely explained by their higher trophic status. Of note is that the piping plovers have
PCB levels greater than herring gulls.

4.8.3 PBDEs

These results follow a similar pattern to the PCBs and are consistent with the high
correlation between PCBs and PBDEs. Great black-backed and herring gull both have
high levels, perhaps associated with foraging close to urban development. Osprey also
have high levels and since they feed exclusively on fish this indicates that PBDEs are
bioaccumulating in near-shore marine fish. Of note is that piping plovers have higher
levels than the other coastal invertivores.
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4.8.4 PFOS

Most species have similar levels, the belted kingfisher being the notable exception. As
described above, these samples were collected from an industrialized river, the
Presumscot. Since their levels are more than twice those of other species, their PFOS
residues indicate that fish in the river may be bioaccumulating PFOS at a greater rate than
the fish in the marine system.

4.8.5 OCs

These follow a similar pattern as the dataset as a whole.

4.9 Overall conclusions

We found both established (Hg, PCBs, chlordane, HCB, DEE) and emerging (PBDE:s,
PFCs) bioaccumaltive toxic pollutants of concern in all the bird eggs we analyzed. Our
results are the first records of PFCs in Maine birds. Since the birds we selected act as
bioindicators of multiple ecosystems across the state, our results indicate that the
compounds we measured are present in the offshore marine, coastal marine, estuarine,
riverine, lacustrine, and terrestrial ecosystems. Although we found most of the
compounds across the entire state, there tended to be higher levels in coastal southern
Maine. This geographic pattern suggests that these compounds are entering the
environment both through atmospheric deposition, because they are found across the
entire state, and through local point sources, because we detected higher levels in urban
and industrial areas. In particular, several areas consistently have higher levels than the
rest of the state: Isles of Shoals, Portland, and the mouth of the Kennebec.

As expected, a number of loon eggs have Hg levels above known effects thresholds. One
eagle egg has PCB levels within a range of known effects, although the congener pattern
is not dominated by the most toxic PCBs. Since no effects threshold have been
established for PBDEs in bird eggs, the residues we detected may or may not have
negative effects. Twenty-three of our samples have PFOS levels above effects threshold
established for chicken eggs—the species we studied may be more or less sensitive than
the chickens. OCs are all substantially below effects thresholds.

Our Hg results are consistent with other studies conducted in the region. Our PCB results
are also consistent with those across the United States, and when compared to earlier
studies in Maine, herring gull, common eider, and bald eagle all have lower levels than in
the past. Overall our PBDE result are not consistently higher or lower than other areas
across the globe, but some species had higher or lower PBDEs than in other areas. Like
recent studies on terrestrial birds we detected higher brominated PBDEs, including
decaBDE, in terrestrial predators: American kestrel and peregrine falcon. Only one study
has analyzed PFOS in bird eggs of two species in the Great Lakes region. Our results are
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similar to these. Moreover, although a direct comparison is not possible, our results are
consistent with PFOS in the liver of multiple species around the world. Our OC results
are generally within the range of other studies.

Our results show that many of the compounds we measured increase in concert with each
other. The strongest relationship we found is between PCBs and PBDEs, indicating that
species and areas with high PCB levels may also have high PBDE levels. These
relationships suggest that some species may have higher levels simultaneously of
multiple compounds, which together may have greater negative impact on reproductive
success, the neurological system, endocrine function, and overall physiology.
Consequently, high trophic level predators may have a combined negative effect of these
compounds despite having individual contaminants below known effects thresholds.

In general our results followed the expected pattern- with high trophic level predators
having the highest overall contaminant levels. Bald eagle in particular have PCB, PBDEs,
PFCs, chlordane, and DDE multiple times higher than other species. Two species did not
follow the expected pattern: belted-kingfisher and piping plover. The kingfisher eggs
were collected from an urbanized river that may have overall higher pollution levels than
other sites where we collected samples; if we were able to collect samples from other
species at this site, their levels also may have been higher. The reason for the higher
contaminant levels in plovers in not clear.

Estuaries consistently have lower levels of all the compounds. However, these results
may be confounded by the lower trophic level of species we collected samples from in
estuaries. As expected, lakes have higher levels of Hg than other habitats, and PCBs have
higher levels along the coast.

In summary, our results indicate that both historical and emerging chemicals of concern
are accumulating in birds that forage in diverse ecosystems across the entire state of
Maine.
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Egg morphometric
measurements
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Figure 3. Analytical scheme for the determination of PCBs, PBDEs, organochlorine

pesticides, perfluorinated compounds and mercury in the eggs of birds from Maine, USA,
2007.
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LI B O L I N L AL | LU L AL I L O B
-15-05 5 051 2 8 11522530 5 1 1565 11522511.5225 3.5.52.53.54.

Variable by Variable Correlation Count Signif Prob

HCB  PFOS 0.10 60 0.432
PBDE Hg 0.16 58 0.216
CHL  Hg 018 58 0.170
PFOS Hg 021 58 0.114
DDE  Hg 026 58 0.048
HCB  Hg 027 58 0.039
HCB  PBDE 031 60 0.017
CHL HCB 035 60 0.007
DDE  HCB 037 60 0.003
CHL PFOS 041 60 0.001
PCB  HCB 042 60 0.001
PCB  Hg 043 58 0.001
PFOS PBDE 044 60 <0.001
PCB  PFOS 049 60  <0.001
PCB  CHL 055 60  <0.001
CHL  PBDE 058 60  <0.001
DDE  PFOS 058 60  <0.001
DDE  PBDE 077 60  <0.001
DDE  CHL 077 60 <0.001
PCB  DDE 079 60  <0.001
PCB  PBDE 0.80 60  <0.001

Figure 4. Correlation between compounds. In the graph, the stronger relationships have
tight ovals while poor relationships have circles. The closer the correlation value is to 1
the stronger the relationship. Rows highlighted in gray are significantly related.
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Total Chlordane (ng/g, ww, ppb)
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Figure 5. Most significant relationships between contaminants (p < 0.0001).
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Figure 6. Rank of total
contaminants. Species key
and sample size below,

Species
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cormorant DGCO
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gult
Glossy ibis GLIB 1
Herring Gull HERG 6
Least tern LETE 1
Leach’s storm-petrel LHSP 1
Osprey OSPR 6
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Figure 7. Hg levels by
species. Blue line is mean,
black line is the median,
and box boundary is data
range. Red line is adverse
effects threshold for loon
eggs, 1.3 ng/g, wet weight
(Evers et al. 2003).

Species Key (sample size):
American kestrel, AMKE, (n = 1);
Arctic tern, ARTE, (n = 1); Atlantic
puffin, ATPU, (n = 1); bald eagle,
BAEA, (n = 4); belted kingfisher,
BEKI, (n = 2); black guillemot,
BLGU, (n= 3); common eider, COEI,
{n = 6); common loon, COLO, (n=
6); common tern, COTE, (n = 1);
double-crested cormorant, DCCO,
(n = 5); great black-backed gull,
GBBG, (n = 2); glossy ibis, GLIB, (n
= 1); herring gull, HERG, (n = 6);
least tern, LETE, (n = 1); Leach’s
storm-petrel, LHSP, (n = 1); osprey,
OSPR, (n = 6); peregrine falcon,
PEFA, (n = 1); piping plover, PIPL,
(n = 4); red-winged blackbird,
RWBL, (n = 1); snowy egret, SNEG,
(n = 1); tree swallow, TRES, (n = 4);
Virginia rail, VIRA, (n = 1); and
willet, WILL, (n = 1).
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Figure 8. Total PCB levels
by species. Blue line is
mean, black line is the
median, and box boundary
is data range. Red line is
adverse effects threshold.

Species Key (sample size):
American kestrel, AMKE, (n = 1);
Arctlc tern, ARTE, (n = 1); Atlantlc
puffin, ATPU, (n = 1); bald eagle,
BAEA, (n = 4); belted kingfisher,
BEKI, (n = 2); black guillemot,
BLGU, (n= 3); common eider, COEI,
(n = 6); common loon, COLO, (n =
6); common tern, COTE, (n =1);
double-crested cormorant, DCCO,
(n = 5); great black-backed gull,
GBBG, (n = 2); glossy ibis, GLIB, (n
= 1); herring gull, HERG, (n = 6);
least tern, LETE, (n = 1); Leach’s
storm-petrel, LHSP, (n = 1); osprey,
OSPR, (n = 6); peregrine falcon,
PEFA, (n = 1); piping plover, PIPL,
(n = 4); red-winged blackbird,
RWBL, (n = 1); snowy egret, SNEG,
(n = 1); tree swallow, TRES, (n = 4);
Virginia rall, VIRA, (n = 1); and
willet, WILL, (n = 1).

Total PCB (ng/g, ww, ppb)
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Figure 9. Total PBDE by
species. Blue line is mean,
black line is the median,
and box boundary is data
range. Between green lines
is mean range of total
PBDE in six species of
Norwegian predatory bird
eggs (Herzke et al. 2005).

Species Key (sample size):
American kestrel, AMKE, (n = 1);
Arctic tern, ARTE, (n = 1); Atlantic
puffin, ATPU, (n = 1); bald eagle,
BAEA, (n = 4); belted kingfisher,
BEKI, (n = 2); black guillemot,
BLGU, (n= 3); common eider, COEI,
(n = 6); common loon, COLO, (n=
6); common tern, COTE, (n =1);
double-crested cormorant, DCCO,
(n = 5); great black-backed gull,
GBBG, (n = 2); glossy ibis, GLIB, (n
= 1); herring gull, HERG, (n = 6);
least tern, LETE, (n = 1); Leach’s
storm-petrel, LHSP, (n = 1); osprey,
OSPR, (n = 6); peregrine falcon,
PEFA, (n = 1); piping plover, PIPL,
(n = 4); red-winged blackbird,
RWBL, (n = 1); snowy egret, SNEG,
(n = 1); tree swallow, TRES, (n = 4);
Virginia rall, VIRA, (n = 1); and
willet, WILL, (n = 1).
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Figure 10. PFOS levels by

species. Blue line is mean,
800

black line is the median,
and box boundary is data
range. Red line is lowest-
observed-adverse-effects
level for leghorn chicken,
100 ng/g, wet weight
(Molina et al. 2006).

Species Key (sample sizs):
American kestrel, AMKE, (n = 1);

Arctic tern, ARTE, (n = 1); Atlantic
puffin, ATPU, (n = 1); bald eagle,
BAEA, (n = 4); belted kingfisher,
BEKI, (n = 2); black guillemot,
BLGU, (n= 3); common eider, COEI,
(n = 6); common loon, COLO, (n =
6); common tern, COTE, (n = 1);

double-crested cormorant, DCCO,
(n = 5); great black-backed gull, 100 == = i
GBBG, (n = 2); glossy ibis, GLIB, (n s E —_— E ——
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Figure 11. HCB levels by
species. Blue line is mean,
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ww) effects threshold for
Japanese quail (Wiemeyer 14 -
1996).
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Figure 12. Total chlordane
by species. Blue line is
mean, black line is the
median, and box boundary
is data range. All sample
fall below the 2,000 (ng/g)
lethal levels measured in
bird brains (Blus 2003).

Species Key (sample size):
American kestrel, AMKE, (n = 1);
Arctic tern, ARTE, (n = 1); Atlantic
puffin, ATPU, (n = 1); bald eagle,
BAEA, (n = 4); belted kingfisher,
BEK], (n = 2); black guiilemot,
BLGU, (n= 3); common eider, COEI,
(n = 6); common loon, COLO, (n=
6); common tern, COTE, (n = 1);
double-crested cormorant, DCCO,
(n = 5); great black-backed gull,
GBBG, (n = 2); glossy ibis, GLIB, (n
= 1); herring gull, HERG, (n = 6);
least tern, LETE, (n = 1); Leach’s
storm-petrel, LHSP, (n = 1); osprey,
OSPR, (n = 6); peregrine falcon,
PEFA, (n = 1); piping plover, PIPL,
(n = 4); red-winged blackbird,
RWBL, (n = 1); snowy egret, SNEG,
(n = 1); tree swallow, TRES, (n = 4);
Virginia rail, VIRA, (n = 1); and
willet, WILL, (n = 1).
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Figure 13. DDE levels by
species. Blue line is mean,
black line is the median,
and box boundary is data
range. All levels fall below
the 15,000 (ng/g, ww)
effects threshold for
peregrine falcons (Blus
2003).

Species Key (sample size):
American kestrel, AMKE, (n =1);

Arctic tern, ARTE, (n = 1); Atlantic
puffin, ATPU, (n = 1); bald eagle,
BAEA, (n = 4); belted kingfisher,
BEKI, (n = 2); black guillemot,
BLGU, (n= 3); common eider, COEI,
(n = 6); common loon, COLO, (n =
6); common tern, COTE, (n = 1);
double-crested cormorant, DCCO,
(n = 5); great black-backed gull,
GBBG, (n = 2); glossy ibis, GLIB, (n
= 1); herring gull, HERG, (n = 6);
least tern, LETE, (n = 1); Leach’s
storm-petrel, LHSP, (n = 1); osprey,
OSPR, (n = 6); peregrine falcon,
PEFA, (n = 1); piping plover, PIPL,
(n = 4); red-winged blackbird,
RWBL, (n = 1); snowy egret, SNEG,
(n = 1); tree swallow, TRES, (n = 4);
Virglnia rall, VIRA, (n = 1); and
willet, WILL, (n = 1).
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Figure 14. Percentage of PCB homologue by species.
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Figure 15. Percentage of PCB isomers (composing > 5% of total PCB) by species.
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Figure 19. Hg geographic variation (1g/g, ww, ppm).
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Legend
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Figure 20. Total PCB geographic variation (ng/g, ww, ppb). Categories are relative to
each species. Hatched area represents area generally high in most species (note: within
this area there are herring gull, cormorant, and plover levels that do not follow the trend).
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Figure 21. PBDE geographic variation (ng/g, ww, ppb). Categories are relative to each
species. Hatched area represents area generally high in most species (note: within this
area there are plover, cormorant, and osprey levels that do not follow the trend).
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Figure 22. PFOS geographic variation (ng/g, ww, ppb). Categories are relative to each
species. Hatched area represents area generally high in most species (note: within this
area there are plover, cormorant, and herring gull levels that do not follow the trend).
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Figure 23. HCB geographic variation (ng/g, ww, ppb). Categories are relative to each
species. Hatched area represents area generally high in most species (note: within this
area there are eider and herring gull levels that do not follow the trend).
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Figure 25. Total DDT geographic variation (ng/g, ww, ppb).
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7. TABLES

Contaminants in Maine birds

Table 1. Migration, breeding phenology, and diet of study species.

Time on breeding

Species ground before egg Diet Citation
laying
American kestrel 2-3 weeks VR G Smallwood and Bird 2002
and small vertebrates
. Small fish,
Arctic tern 2-4 weeks crustaceans, insects Hatch 2002
; . Small to mid-sized
Atlantic puffin 2-3 weeks schooling fish Lowther et al. 2002
Bald eagle 2-3 months Fish, birds, mammals  C. Desorbo per. Com.
Belted kingfisher 4-6 weeks Small fish Hamas 1994, Albano 2002
Black guillemot Year round EShihile f?:'? pelagic Butler and Buckley 2002
Common eider 2-4 weeks Benthic invertebrates Goudie et al. 2002
Common loon 4 weeks Small, mﬁgri‘um sized BRI unpublished data
Common tern 15-25 days Small fish Nisbet 2002
Double-crested :
cormorant 2-4 weeks Fish 4-40cm Hatch and Weseloh 1999
Great black-backed Fish, invertebrates,
gull Year round birds, mammals Good 1998
Glossy ibis 2-4 weeks Invertebrates Davis and Kricher 2002
Herring Gull Year round Inverlell;ir:jt:s, fish, Perotti and Good 1994
Small fish,
Least tern 2-3 weeks inge-arieenll Thompson et al. 1997
) Myctophid fish, .
Leach's storm-petrel < 9 weeks aHenTalas Huntington et al. 1996
Osprey 4 weeks Live fish Poole et al. 2002
Peregrine falcon 2 weeks to 2 months Birds White et al. 2002
Piping plover 2-4 weeks invertebrates Haig 2004
Red-winged blackbird 2-4 weeks Insects, seeds Yasukawa and Searcy 1995
Invertebrates, fish,
Snowy egret 3-4 weeks frogs, snakes Parsons and Master 2000
Tree swallow 2-4 weeks Flying insects Robertson et al. 1992
Virginia rail 2-4 weeks Aquatic invertebrates Conway 1995
Willet 3 weeks psecSligvonbizios Lowther et al. 2001

small fish
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Table 2 Samples Collected

Contaminants in Maine birds

. . . Viable . # Total
Species Latin Location Town Lat Long Habitat Clutch eaas
AEletlrflm Falco sparverius Gorham Gorham 43.700470 -70.398850 &0 Terrestrial 3 3

. Sterna . o Yes :
Arctic tern paradisaea Petit Manan Millbridge 44.366980 -67.866060 Marine 2 2
Atlantic puffin Fratercula arctica Petit Manan Millbridge 44366980 -67.866060 No Marine 1 1

Haliagetus . No . -
Bald eagle leucocephalus Penobscot River Chester 45.384722 -68.518111 Riverine 1 1
Tibbet island Boothbay 43978810 -69.662128 O Marine 1 1

. T3 Indian No

Quakish Lake Purchase 45.630750 -68.758278 Freshwater 1 1
Quantabcook Searsmont 44,395444  -69.180389 No Freshwater 1 1

Belted Cenvle al P Yes .
kingfisher eryle alcyon resumscott R. Falmouth 43.715360 -70.317300 Riverine 1 2
Westbrook ~ 43.730470 -70.290800 YO8 Riverine 1 2

Black Pandion . _— Yes .
guillemot haliaetus Petit Manan Millbridge 44.366980 -67.866060 Marine 3 3
Seallsland NWR  Crichaven TWP  43.887590 -68.740823 YOS Marine 3 3
Western Island Deer Isle 44291217 -68.822417 VoS Marine 3 3

, Somateria : Yes :
Common eider mollissima Isles of Shoals Kittery 42.988010 -70.610950 Marine 3 3
Flat Island islesboro 44317640 -68.932160  '°° Marine 3 3
Goose Island Eastport 44913610 -67.041310 '°S Marine 3 3
S. Sugarloaf Island Phippsburg ~ 43.748330 -69.771790  Y©S Marine 3 3
Seallsland NWR  Crichaven TWP  43.887590 -68.740823  '©S Marine 3 3
Stratton Island O'dB(:;‘;';ard 43504310 -70.312640 YOS Marine 3 3
Common loon  Gavia immer Aziscohos Lake Lincoln TWP 44944051 -70.994675 No Freshwater 1 1
Coleman Pond Lincolnville 44,295339 -69.073618 No Freshwater 1 1
Flagstaff Lake Dead River TWP 45.187117 -70.267309 O Freshwater 1 1
Forest Ingalls Pond Bridgton 43.966739 -70.686541 Ng Freshwater 1 1
Moosehead Lake Spalding, TWR 45.604519 -68.701706 No Freshwater 1 1
Long Pond, MountDesert 44325007 68361031 \° Freshwater 1 1

Common tem  Stérna hirundo Petit Manan Millbridge ~ 44.366980 -67.866060  '°° Marine 3 3
Double- Phalacrocorax Wi
crested auritus Flat Island Islesboro 44317640 -68.932160 Marine 3 3

cormorant
Goose Island Eastport 44913610 -67.041310 YOS Marine 3 3
Isles of Shoals Kittery 42975960 -70.625630 YOS Marine 3 3
S. Sugarloat Island Phippsburg ~ 43.748330 -69.771790  '€° Marine 3 3
Stratton Island O'dsgg‘;’;a'd 43504310 -70.312640 YOS Marine 3 3
%;i?eg'agﬁl' Larus marinus  S. Sugarloaf Island Phippsburg 43748330 -69.771790  '°S Marine 3 3
Stratton Island O'dB(:;%';]a’d 43504310 -70.312640 YOS Marine 3 3
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Contaminants in Maine birds

Species Latin Location Town Lat Long e Habitat Cll.?t ch :;_"91
Glossy ibis /29208 Stratton Island oorhard 43504310 70312640  ° Estuarine 3 3
Herring Gull  Larus argentatus Isles of Shoals Kittery 42.988010 -70.610950 ks Marine 3 3

Flat Island Islesboro 44317640 -68.932160  OS Marine 3 3

Goose Island Eastport 44913610 -67.041310 YOS Marine 3 3

8. Sugarloaf Island Phippsburg ~ 43.748330 -69.771790  Y©S Marine 3 3

Seallsland NWR  Criehaven TWP 43.887590 -68.740823  Y©S Marine 3 3

Stratton Island OudOrchard 43504310 70312640 YO Marine 3 3

Leasttern Sterna antillarum Crescent Surf Kennebunk 43.387931 -70.429053 No Marine 2 2
Leac:: slorm- Oceanodioma  geqlisland NWR  Seal Island NWR  43.887590 68740823  '°° Marine 3 3
Osprey - ﬁ:ﬂg’t‘;’; Bug Light South Portland ~ 43.654510 -70.240360  \© Marine 1 1
Fore River Portland 43643426 -70.289968  '\° Marine 1 1

Fort Point Stockton Springs 44.469305 -68.803208 i Marine 1 1

Hog Island North Haven 44177492 -68.815976 es Marine 1 1

S. Sugarloaf Island Phippsburg ~ 43.748330 -69.771790  Y©S Marine 1 1

Verso Mill Bucksport 44579019 -68.809802 No Marine 1 1

P?;T!(:gc:;ne Falco peregrinus Portland Portland 43.642255 -70.284844 R Terrestrial 1 1
Piping plover  Charadrius Ferry Beach Saco 43493666 -70.385325  © Estuarine 1 3
Hills Beach Biddeford 43.451048 -70.363724 B Estuarine 1 2

Popham Beach Phippsburg 43.735246 -69.807936 hE Estuarine 1 4

Wells Beach Wells 43.313573 -70.561277 No Estuarine 1 2

Aoy p,':‘g:,’:é‘;i ] Highland Lake Famouth 43752700 -70.354640  '&° Freshwater 1 2
Snowy egret  Egretta thula Stratton Island Scarborough  43.504310 -70.312640 Ma Estuarine 2 2
Tree swallow Ta‘;’,.’é’oc,’;’f’a Gilsland Farm Falmouth 43708157 -70.239675  Y°° Terrestrial 2 6
Highland Lake Falmouth 43.752700 -70.354640 e Freshwater 2 9
Scarborough marsh Scarborough  43.565970 -70.354060 Yes Estuarine 6 14

Stratton Island oeorhard 43504310 70312640 YO Marine 3 12

Virginia rail  Rallus limicola  Scarborough marsh Scarborough  43.565970 -70.354060 10 Estuarine 1 5
Willet iztr?;%g%ha% US  Scarboroughmarsh  Scarborough  43.565970 70354060 b Estuarine 1 1
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Contaminants in Maine birds

Table 3. Recoveries of PFCs and labeled internal standards spiked into egg matrixes

Matrix Spike Recovery (%) n=6

Compound Mean STDEV
PFOS 70 35
PFDS 81 12

PFOSA 60 25
PFHpA 80 13
PFOA 103 17
PFNA 102 15
PFDA 131 15
PFUnDA 124 22
PFDoDA 130 24
Internal Standard Recovery (%) n=60
Mean STDEV

13C4PFOS 107 23

13C4PFOA 122 27

13C4PFNA 101 24

13C4PFDA 134 34

Table 4. Species code, sample size, % lipid, and % moisture of egg composites. Sample
size applies to all figures that follow.

S.D. Lipid content Mean Moisture S.D. Moisture

Species Species Code N Mean Lipid (%) (%) (%) content (%)
American kestrel AMKE 1 8.28 78.05
Arctic tern ARTE 1 9.76 74.02
Atlantic puffin ATPU 1 10.39 71.57
Bald eagle BAEA 4 5.09 2.06 77.77 3.19
Belted kingfisher BEKI 2 6.74 0.13 77.97 0.04
Black guillemot BLGU 3 11.43 0.85 69.61 3.68
Common eider COEI 6 19.72 1.38 61.92 0.80
Common loon COLO 6 8.43 2.10 72.54 3.27
Common tern COTE 1 11.16 70.24
Double-crested cormorant DCCO 5 5.24 0.69 81.10 1.39
Great black-backed gull GBBG 2 8.33 1.41 74.46 1.77
Glossy ibis GLIB 1 6.41 78.20
Herring Gull HERG 6 10.02 1.83 72.62 2.96
Least tern LETE 1 13.60 68.00
Leach's storm-petrel LHSP 1 11.77 69.79
Osprey OSPR 6 4.42 1.59 79.62 3.53
Peregrine falcon PEFA 1 5.84 78.37
Piping plover PIPL 4 15.09 2.1 68.56 2.06
Red-winged blackbird RWBL 1 4.59 84.00
Snowy egret SNEG 1 7.59 77.18
Tree swallow TRES 4 6.59 1.33 77.59 4.11
Virginia rail VIRA 1 9.09 75.36
Willet WILL 1 13.10 64.02
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