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INTRODUCTION

The Casco Bay Estuary Project in Maine is currently engaged in the environmental monitoring of
Casco Bay. Environmental monitoring is important to establish baseline information, assess the
current state of the environment, and to detect environmental change. Increasingly, satellite
imagery, remote sensing, and Geographic Information Systems (GIS) have become key tools for
environmental monitoring. Satellite imagery in conjunction with remote sensing techniques and

GIS permit a highly accurate and detailed spatial representation of environmental features.

One task of the Casco Bay Estuary Project is to describe and delineate urban land cover. Urban
land cover is characterized by spatially heterogeneous areas that contain a large variety of small
structures at a high spatial frequency (Jensen 1983). These land cover or land use types include
single family housing, multiple family housing, commercial buildings, industrial areas,
transportation networks, parking lots, parks and lawns. The spatial resolution of a multispectral
satellite image may be too coarse to accurately delineate such land cover types. In addition,
urban structures are often indistinguishable from natural structures solely based on spectral
reflectance. An example of this problem would be the similarity in reflectance of the concrete of

buildings and intertidal rock.

In 1995 the company Earthsat produced a land cover classification from a Landsat Thematic
Mapper (TM) scene for the Casco Bay Estuary Project. Unsupervised classification was used to
create a land cover map with 25 classes, including 4 urban land cover types (high density urban,
dense urban, moderate density urban, and residential/bare). Due to the limited resolution of
Landsat TM (pixels 30m on a side), and the spectral similarity between some urban surfaces and

other types of bare surfaces, the classification did not differentiate between urban and

commercial land cover types.

The Spatial Analysis Lab at the Smithsonian Institutions’ Conservation and Research Center
entered into a contract with the Casco Bay Estuary Project to develop and produce an improved
land cover classification for urban land cover classes in Casco Bay. This classification included
the merging of data from different satellite sensors, image processing, unsupervised

classification, selection of training sites, evaluation of classification, ground truthing, and an
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accuracy assessment. In addition, we performed decision-rule based classification using the
results of our image classification and ancillary data. The major steps in the production of this

improved land cover map included:

1. Resolution Merge: Multiple sensors can be used to produce a composite image that allows for
more detailed interpretation. We merged a Landsat Thematic Mapper and a SPOT
Panchromatic image to combine the spatial content of the high resolution SPOT
Panchromatic image (10m on one side) with the spectral information from the Landsat

Thematic Mapper image.

2. Multispectral Classification: We used an image processing system to perform a classification

on the merged image.

3. Decision-rule Classification: This form of classification employs the registration of image
data with ancillary data sets. After visual interpretation and comparisons between
satellite data and ancillary data sets, we developed rules in a decision tree that were

applied during classification.

4. Accuracy Assessment: In this analysis, we used data from the field to evaluate the

classification, and to determine the classification accuracy for urban classes.

The following four sections explain the techniques and discuss the results for each one of the
four major steps. To keep data sets manageable, all analyses were performed on a subsetted data
set that contained the City of Portland and surrounding lands. This approach allowed us to
evaluate each technique before applying it in the final classification. In the fifth section, we
discuss the results of the final classification. All image processing and remote sensing analyses
presented in this report were performed with ERDAS IMAGINE software. We used ARC/INFO
software for all GIS operations and analyses and TRIMBLE software for the registration and

differential correction of ground truthing points.



CRC Spatial Analysis Lab Improving Land Cover Maps

SECTION 1: RESOLUTION MERGE

INTRODUCTION

In a resolution merge a satellite image with high spatial resolution is merged with a satellite
image that has a lower spatial resolution but spectral characteristics that are desirable for the
surfaces structures of concern. Resolution merge techniques can be divided into different
categories: 1) techniques that retain as much of the spectral information as possible, and 2)
techniques for display that increase visual interpretability of the image. In current remote
sensing, research focuses on resolution merge techniques that preserve most of the spectral
information (Chavez et al. 1991). These techniques include: forward-reverse Principal
Components transform (PCA transforms), multiplicative transform, and forward-reverse

Intensity Hue Saturation transform (IHS transforms).

We merged a SPOT Panchromatic image with a Landsat Thematic Mapper image. Landsat TM
sensors have six bands with a spatial resolution of 28.5 m (Figure 1). The SPOT Panchromatic
sensor has one broad band with a very high spatial resolution of 10 m (Figure 2). Combining
these two images to yield a six band data set with 10 m resolution combines the best
characteristics of both sensors. For the remainder of the report the Landsat Thematic Mapper

and the SPOT Panchromatic image are referred to as TM and SPOT, respectively.



CRC Spatial Analysis Lab Improving Land Cover Map

o ™ e P g e Meters
5000 o

Figure 1. Color composite of Landsat TM image (bands 4, 5 and 3) displaying the Casco Bay Area.
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Figure 2. SPOT Panchromatic Image displaying the Casco Bay Area.
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DATA SOURCES

The TM and SPOT images used in our analyses were previously rectified and geocoded to a
Universal Transverse Mercator projection and the North American Datum 1927. The TM image
has a spatial resolution of 30 m and consists of seven spectral bands. We subsetted the TM

image to 6 layers leaving out the thermal infra-red layer.

The SPOT image has a spatial resolution of 10 m. For this study we only utilized the
panchromatic band of a SPOT scene, which registers reflectance in the visible range of the

spectrum.

IMAGE PREPROCESSING

Georeferencing: In order to merge the TM with the SPOT data, the TM image needed to be
resampled to a 10 m resolution and cross-referenced to the SPOT image using ground control
points. We located five ground control points in the TM image, used them as source coordinates
and cross-referenced them to five pixels in the SPOT image. After computing a first-order
transformation matrix, we resampled the TM image with a nearest neighbor algorithm. The

accuracy of the cross-referencing and resampling was improved until we achieved a root mean

square error of below 1.0.

Subsetting: The TM and SPOT data set were reduced in size to restrict analyses to parts of the
data sets that covered a common geographic area. Because of the large data volume, we also
decided to conduct preliminary analyses on a subsetted image that covered the south-east
quadrant of the study area, including Portland and surrounding areas. We chose the Portland area
of the images because we were most concerned with the differentiation of urban land cover. All
analyses were first conducted on the south-east quadrant and then subsequently applied to the full
data set. This approach kept data sets manageable in the initial analytical processes and allowed

us to create and evaluate spectral signatures before applying them to the entire data set.

RESOLUTION MERGE TECHNIQUES
We employed three different techniques: Principal Components, Intensity Hue Saturation, and
Brovey Transform. The first two techniques assume that the intensity component (Principal

Component 1 or Intensity) is spectrally equivalent to the SPOT Panchromatic image, and that all
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the spectral information is contained in the other Principal Components or in Hue and Saturation.
Since SPOT data do not cover the full spectral range that TM data do, this assumption does not

strictly hold true.

Principal Components Transform: Principal Components Analysis is used to analyze the variance
in the 6 spectral bands, excluding the thermal band. The first Principal Component (PC-1) is
removed and its minimum and maximum are determined. In the next step the SPOT image is
remapped so that the histogram of its spectral values is constant, but it is in the same numerical
range as PC-1. The high resolution image is substituted for PC-1 and the Principal Components

Analysis is then reversed.

Intensity Hue Saturation Transform: This method uses three bands of the lower resolution data
set and transforms these data into Intensity Hue Saturation (IHS) space. IHS is an alternate color
space to the normally used three additive colors red, green and blue (RGB). RGB is commonly
used in image processing systems that have three color guns. In IHS the three positioned
parameters are Intensity, Hue, and Saturation. This system presents colors more closely to the
way they are perceived by the human eye. Intensity is the overall brightness of the scene (like
PC-1), Saturation represents the purity of color, and Hue is representative of the dominant
wavelength of the pixel. As in the PCA transform, the SPOT image is remapped so that the
histogram of its spectral values is constant, but it is in the same numerical range as the Intensity
band. Following this contrast stretch the SPOT data replaces the Intensity band and a RGB

transform is applied that reprojects the merged image into RGB color space.

Brovey Transform: This technique uses all bands of the TM image and multiplies the data from
the high resolution image with the fraction between the spectral values for the respective band
and the sum of all spectral values for all other bands. Such simple arithmetic and multiplicative
approaches to resolution merge have been demonstrated to retain most of the spectral
information contained in the TM imagery. The Brovey Transform follows the following
formula:

[DNp, /(DN +DNp-DNg)] % [DNyigh e imagel = DNt g

[DN /(DN DNg+DNgo)] X DNyt e el = DNis_pe

etc.
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RESULTS OF THE RESOLUTION MERGE AND COMPARISON OF TECHNIQUES

For the classification of urban land cover, the merged image should display urban classes that
can be easily differentiated using classification algorithms and visual interpretation. Ideally the
resolution merge should add spatial information without distorting spectral information
contained in the low resolution image. Visual interpretation and unsupervised classification were
performed on merged images produce by the PCA, IHS, and Brovey transform, to evaluate and
compare their usefulness for image enhancement (Figure 3). We found that urban land cover
was more easily differentiated in images produced by the Brovey transform than images
produced by the other techniques. The PCA transformed image was good for differentiation of
vegetation and forest types but lacked detail in the urban areas. The IHS transformed image
showed considerable distortions of the spectral information and was also visually not as
enhanced as the other two. Based on these observation, we decided to use the Brovey transform

for the resolution merge and all subsequent analyses.
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techniques. A = color composite of original Landsat TM image,

Figure 3. Visual comparison of resolution merge
B = resolution merge with [FIS transform, C = resolution merge with PCA transfor, D = resolution merge with

Brovey transform.
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SECTION 2: MULTISPECTRAL CLASSIFICATION

INTRODUCTION

In multispectral classification, pixels of an image are assigned to a predefined number of
categories based on their data values for all bands used in the analyses. Statistical, mathematical,
or context criteria can be used for this sorting process. Commonly, spectral reflectance is
employed in the classification of multispectral images. Statistics are derived from spectral
characteristics of all pixels in an image. These statistics can then be used to detect specific
spectral patterns. In subsequent analyses the computer is trained to recognize these patterns in
the data and assign pixels to the appropriate categories. This training can be performed in a
supervised or unsupervised method. We used an hybrid classification approach in which

unsupervised training and supervised classification were utilized.

CLASSIFICATION

Unsupervised Training: Unsupervised training was performed using an ISODATA clustering
algorithm that divided pixels into classes based on the minimum Euclidian distance between their
spectral values (ERDAS Field Guide 1991). For analyses on the south-east quadrant of the
scenes we created 40 initial classes using ISODATA. These classes were then evaluated, merged
and assigned to specific land cover categories. Data sources used for the assignment of a class to
a land cover category included ground-truth points that were collected in November 1995, the

land cover map produced by Earthsat and other available ancillary data sets.

Ground Truthing and Collecting Training Pixels: In November 1995, we ground truthed 120

locations in the Casco Bay area. Points for ground truthing were selected from the unsupervised
classification of the TM image. These points were distributed among statistical clusters. We
used stratified random sampling to select points in urban classes and classes that are spectrally
similar such as sand beaches, bare/sand, gravel, intertidal rock, rock gravel, scrub shrub, and

wetland classes. In the field we were able to use the TM image and topographic maps to find the

points.

During ground truthing each point was assigned to a land cover class according to a classification

scheme explained later in this chapter. To determine the exact geographic location of each point,

10
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we used a Global Positioning System (GPS). The Maine Surveyor Service in Yarmouth, Maine,
operated a community base station at the same time, and provided us with the data for the
differential correction of our GPS rover files. The differential correction was performed at the

Spatial Analysis Lab, and increased the accuracy of GPS to the meter level.

Signature Statistics and Classification: Information from ground truthing was entered into a

database and attached to training pixels. Training pixels in urban areas were used to calculated
statistics for spectral signatures. After creating spectral signatures for urban classes we
performed a supervised classification applying a maximum likelihood decision rule. This rule
determines the probability that a pixel belongs to a particular class. Maximum likelihood
decision rules are based on the assumption that probabilities are equal among classes and that the

input bands have a normal distribution (ERDAS Field Guide 1992).

CLASSIFICATION SCHEME

The classification of satellite imagery to produce land cover maps should be performed with a set
of target classes in mind. Such a classification has to be tailored to the available data sources, the
future use of the land cover map, and the earth features of interest. Our classification scheme
followed closely the scheme used for the production of the first land cover map by Earthsat. In

addition, we refined classes and added higher level categories for urban land cover (Table 1).

In principle, our classification scheme represents a modification of schemes previously suggested
by the United States Geological Survey (Anderson et al. 1976). This classification system was
devised to identify land use and land cover from remote sensor data. It effectively mixes two
different approaches to derive as much information as possible from remote sensor data. Land
cover classification deals with the type of feature present on the earth surface. Land use is
related to the human activity or economic function within areas and can not always be
distinguished from remote sensor data. The classification system we created has three

hierarchical levels (I, II, IIT) of which only levels II and III are displayed in the final land cover

maps.

11
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Table 1. Land Use/Land Cover Classification Scheme

Level 1 Level I Level III
Urban Residential Low Density Residential
Residential
High Density Residential
Commercial Commercial Buildings
Commercial Bare
Mixed Industrial/Commercial
Roads
Barren Land Sand Beaches
Mud Flat
Bare/Sand
Exposed Rock or Gravel Gravel
Intertidal Rock
Mixed Barren Gravel/Rock
Rangeland Grassland
Scrub Shrub
Emergent
Forest Land Deciduous Forest Hardwood
Hardwood/Beech
Coniferous Forest Softwood/Spruce
Softwood/Pine
Softwood/Pine/Wet
Mixed Forest Land Hardwood Mix
Softwood Mix
Hardwood Tolerant
Wetland Forested Wetland
Non-forested Wetland Marsh
Marsh/Grassland
Scrub Shrub Wet
Water Deep Water
Turbid Water

Shallow Water

Improving Land Cover Maps

12
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As suggested by the U.S.G.S., we used a classification system in which categories can be divided
in higher level categories and subcategories. In addition, higher level categories can be
aggregated into lower level categories. We made an effort to differentiate urban land cover as
finely as possible. Therefore we defined the following level III urban classes in our classification

scheme:

Low Density Residential: Single family houses spaced over 30 m from each other. This
includes single family houses in urban as well as in rural areas. The class can occur by itself in
outlying areas, which indicate farm housing. It is also frequently seen along back streets in urban

areas.

Residential: Single family houses spaced between 5 m and 30 m apart. This class is

predominantly found in urban areas. It is usually associated with High Density Residential.

High Density Residential: Single and multiple family houses adjoining one another or in very

close proximity. Found in the downtown areas of Portland.

Commercial Buildings: A class which is clearly defined by medium to large-sized commercial
buildings. No overlap with asphalt parking lots or other high reflectance industrial buildings
occurs. This class can be found along major streets and at major shopping complexes (malls and

strip complexes). It is usually found in association with Commercial Bare areas which

demarcate it as buildings.

Commercial Bare: A class that encompasses asphalt and other high reflectance surfaces such as
parking lots, and paved roofs of buildings. This is a mixed class that can include buildings but
usually is restricted to large parking lots found in the downtown area and around shopping

complexes.

Mixed Commercial/Industrial: A mixed class that represents large buildings with high
reflectance roof tops. These buildings include portions of shopping complexes and large

buildings in the downtown Portland area. The class also comprises large industrial complexes in

outlying areas.

13
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RESULTS AND DISCUSSION

The classification of the initial clusters resulted in 28 classes including six urban classes (Figure
4). We were able to differentiate and delineate urban classes more finely than was done in
previous classifications. Much of this is due to the spatial information added by the SPOT
image. The classification of heterogeneous areas that have the high frequency of urban structures

was especially improved by the resolution merge.

The higher resolution provided by the SPOT image allowed us to more accurately distinguish
urban trees and grassy areas from buildings and parking lots. This increase in accuracy becomes
very apparent when the original land cover classification of a TM image is compared with the

classification produced from the resolution merged image (Figures 4 and 5).

The classification accuracy for classes that have similar spectral characteristics to urban classes is
a major limitation for the use of satellite remote sensing in the mapping of urban land use and
cover. The resolution merge reduced some of these inaccuracies, but there is still a considerable
amount of misclassification for urban classes. An example would be the single family housing

pixels in the intertidal zones of the image.

Our project focused on the differentiation of urban classes or sealed surfaces. Due to spectral
distortions that were induced by the resolution merge, we were not able to finely distinguish
between forest categories and some other vegetation classes. In addition, wet vegetation classes,

such as scrub shrub wet and marshland were frequently misclassified as urban.
In summary, we found that the resolution merge increased accuracy and detail for urban classes

but caused misclassification for some of the vegetation classes. To resolve these problems we

decided to perform a decision-rule classification utilizing other ancillary data.

14
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Figure 4. (Displayed on the next page) Land cover map produced by hybrid classification of

resolution merged image.

15
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Figure 5. (Displayed on the next page) Land cover map produced by Earthsat.
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SECTION 3: DECISION-RULE CLASSIFICATION

INTRODUCTION

Often the identification of land cover, land use, plant communities, or man-made structures is
not entirely successful using remote sensing alone. The integration of remotely sensed data, GIS,
and data modeling offers the possibility of improving on the thematic mapping capabilities of
both types of approaches. It is intuitive that there is not one single technique that will offer the
best results for the land use mapping of many different surface types. This situation is even more
apparent when the land use types of concern are spectrally relatively similar but show

structurally large differences.

Incorporating ancillary data sets in remote sensing has often been adopted in previous research
into land resource problems. Decision tree classifiers are one option that will allow a selectivity
of techniques. Decision trees are an efficient method for separating observations into classes.
We used a decision tree to improve accuracy in vegetation classes and to resolve classification
problems for classes that were spectrally similar to urban cover types. This approach allowed us
to maintain a high level of accuracy for the focal urban classes while we utilized already ground
truthed vegetation classes from the previously produced land cover maps. All GIS operations

during this part of the project were conducted using ARC/INFO software for workstations.

DATA SOURCES AND DECISION RULES

Data sources utilized in our decision-rule classification included the classification of the merged
image, the Coastal Marine Geologic Environments Map (Timson 1976), the land cover
classification previously produced by the Earthsat, and a digitized road map for the study area.

Figure 6 displays the decision tree that we designed for the final classification.

19
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Figure 6. (Displayed on the next page) Decision tree for decision-rule classification of the

merged image.
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Earthsat Land Cover Classification: Earthsat produced a classification using the same TM
image. This classification proved to be useful and valid for most forest land and rangeland
categories. We decided to utilize the Earthsat vegetation information to improve our
classification of vegetation categories. The classification scheme for the Earthsat classification is
given in

Table 2.

The following categories were used in the new classification as complete overlays: dense
emergent, scrub shrub wet, forested wetland and bare ground. The first three categories were
under-represented in our classification. The bare ground class enhanced the accuracy of fields
and bare surfaces by cutting out incorrectly classified urban areas. Each class was recoded to a
separate mask which was then overlaid onto the classified, merged image (Figure 6). To assess

the impact of this operation on other land cover classes, we calculated the number of effected

pixels.

In the merged image, some forest types were not adequately separated from grassland. These
forest classes included hardwood tolerant, hardwood mix and hardwood beech. To improve the
accuracy for forest classes, we constructed forest masks from the Earthsat classification. We
created a classification rule that overlaid these forest classes from the Earthsat image wherever

they intersected the grassland class of the merged image (Figure 6).

22
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Table 2. Classification Scheme used by Earthsat.

Class Name

Moderate Density Urban/High Reflectance
Dense Urban/High Reflectance
High Density Urban/High Reflectance
Residential/Bare

Beach/High Reflectance

Mud Flats

Bare Ground

Shrub 1 - Slope/Exposed Soil/Rock
Shrub 2 - Slope/Exposed Soil/Rock
Grassland Meadow

Scrub Shrub

Dense Emergent

Hardwood

Hardwood Beech/Poplar/Ash
Softwood Spruce/Fir

Softwood Pine

Softwood Pine/Wet

Hardwood Mix

Softwood Mix

Hardwood Tolerant

Forested Wetland

Scrub Shrub Wet

Submerged Vegetation

Water

Shallow Turbid Water

23
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Coastal Marine Geologic Environments: Many coastal marine classes have similar spectral

characteristics to man-made structures and urban land cover. This problem was prevalent in the
Earthsat classification. Due to increased spatial resolution, we were able to reduce inaccuracies
in these areas during our classification process. However, there was still a substantial area within
the coastal zone of the merged image that was misrepresented as urban. We decided to use the
Coastal Marine Geologic Environments map, produced by the U.S.G.S. in 1976, to improve our
classification in these areas. This data set includes higher level classes than we could
differentiate in our classification. To include these classes in our decision-rule classification, we
grouped them into lower level categories that were present in our classification scheme. Table 5

displays the marine geologic classes we utilized and the lower level category to which they were

assigned.

Sand Beaches, Intertidal Rock, Marsh, Gravel and Mud Flats were the land cover categories we
extracted from the Coastal Marine Geologic Environments map. The first four classes were
overlaid on top of the merged image covering all classes underneath (Figure 6). The Marsh
category was treated differently. We created a marsh mask, and overlaid onto the classified

merged image according to the following decision-rules:

1. If the marsh mask intersected urban classes in the merged image, we assigned these

areas to the category marsh.

2. If the marsh mask intersected grassland, we assigned these areas to the category marsh-

grassland.

3. If the marsh mask intersected other vegetation categories, the original category was

retained.

The first decision rule is justified because of the problems we encountered in differentiating

urban categories from marsh. The Coastal Marine Geologic Environments map only delineated

24
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Table 5. Original and Assigned Categories for Land Cover Classes Derived from the Coastal Marine Geologic

Environments Map.

Assigned Lower Level Category Original Higher Level Category
Sand Beach Dunes and Vegetated Beach Ridges
Sand Beach

Mixed Sand and Gravel Beach
Low Energy Beach
Spits
Intertidal Rock Boulder Beach
Boulder Ramp
Mussel Bar
Ledge
Marsh Fresh-Brackish Marsh
Fuvial Marsh
High Salt Marsh
Low Salt Marsh
Marsh Levee
Salt Pannes and Salt Ponds
Gravel Gravel Beach
Washover Fans
Mud Flats Mud Flats
Coarse-Grained Flat
Seaweed-Covered Coarse Flat

Algal Flats

25
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marsh in coastal areas, and was unlikely to introduce error into urban classes in areas distant
from the coast. Decision rules 2 and 3 were designed to retain information on vegetation classes

from the other data sets.

Road Data Set: Linear land features, such as roads, utility corridors, and railroad tracks, usually
cannot usually be discerned in multispectral classification of satellite imagery. Due to
differences in orientation towards the sun and resulting differential shading, these linear
structures can vary enormously in their spectral characteristics. Nevertheless, these structures
can cover large areas and are of interest in a land cover classification. We decided to use a
digital data set of roads to account for their presence, and to be able to quantify the area that is
sealed by these structures. Roads were overlaid onto the merged image, covering all classes
underneath (Figure 6). Visual interpretation of the resulting map demonstrates that spatial

accuracy of the road coverage was within the limits of the overall spatial accuracy of the merged

image.

RESULTS AND DISCUSSION

Decision-rule classification greatly improved the overall quality of the land cover map (Figure
7). Accuracy of most land cover classes seemed to be increased based on visual comparison.
Decision-rule classification also helped to define land cover categories that are difficult to
distinguish based on remote sensing alone. We were able to increase accuracy for urban classes,

and also increase the number of higher level categories in the final classification.
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Figure 7. (Displayed on the next page) Land cover map produced from merged image using

decision-rule classification.
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SECTION 4: ACCURACY ASSESSMENT

INTRODUCTION

The quality of land cover classifications derived from remote sensing can be estimated using an
accuracy assessment. Accuracy assessment is accomplished by comparing the classification to
land cover information from known geographic locations. This process is usually achieved by
collecting ground truth information for all classes at sampling points and recording the exact
geographic position of these points with a GPS. The ground truth information can then be
assigned to reference pixels, and the true land cover can be compared to the land cover assigned

during the classification.

The number of reference pixels is an important factor in determining the accuracy of a
classification. It has been demonstrated that more than 250 pixels are needed to estimate the
mean accuracy of a class to within plus or minus five percent (Congalton 1991). However,
financial and time constraints rarely allow for such extensive data collection. We collected

ground truth data for 154 ground control points in six urban classes.

To assess the accuracy of urban classes we generated an error matrix, and calculated producer’s
and user’s accuracy. We also used a Kappa coefficient to assess the reduction in error generated

by the classification process to the error of a completely random classification.

GROUND TRUTHING FOR THE ACCURACY ASSESSMENT

In April 1996, we collected ground truth information for urban land cover at 154 locations in the
Casco Bay area. Stratified random sampling was used to predetermine the geographic location
for ground truthing. The points were distributed across all urban land cover categories. The
protocol for collecting land cover information and determining the exact geographic position for
the location was the same as described for the collection of ground truth data for training pixels

in section 2. The data from ground truthing was entered into a database, and merged with the

classification to create reference pixels.
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RESULTS AND DISCUSSION

The results of the accuracy assessment are listed in the error matrix (Table 6). The performance
of the classification is described in different ways in this error matrix. All diagonal elements of
the matrix represent pixels that were correctly classified. All non-diagonal elements represent
misclassification and can further be divided in omission and commission errors. Omission error
occurs when a pixel is excluded from its correct category, while commission error occurs when a
pixel is included into the wrong category. Overall accuracy of urban classes is computed by
dividing the total number of correctly classified pixels by the number of reference pixels.
Producer’s accuracy expresses this figure for each of the categories separately. User’s accuracy
can be considered a measure of commission error for each class. To calculate user’s accuracy the
number of correctly classified pixels for each category is divided by the total number of pixels

that were assigned to this class.

The overall accuracy for urban classes was 85.06%. The producer’s accuracy is very high for
three of the urban classes, indicating that there is little omission error for low density residential,
commercial bare, and roads. Omission error is also acceptable and below 15 % for roads and
bare/sand. The other urban classes have relatively high omission errors. However, when taking
a closer look at the error matrix, it is apparent that all errors of omission occurred only between
urban land categories. For example, the high density residential classes were omitted for 4 pixels
that were assigned to commercial bare and mixed industrial and commercial. This procedure

seems acceptable since these classes have a tendency to be located relatively close to each other.

The user’s accuracy is in most cases higher than the producer’s accuracy except for commercial
bare and mixed industrial/commercial. Both of these classes can occur in close proximity to
commercial buildings and high density residential, which were the classes most often incorrectly
assigned to pixels of the category commercial bare and mixed industrial/commercial. Merging
all commercial classes would greatly improve user’s and producer’s accuracy. All other classes

fare very well in the classification, and can be differentiated with good accuracy.

Similar results are achieved when calculating the Kappa coefficient (Table 7). The Kappa
statistics describe to what percentage of correct values in the error matrix are due to truly correct

classification as opposed to a correct classification by chance.
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Table 6. Error Matrix for Accuracy Assesment

Reference Data Set

Low Density High Density Commercial Commercial Mixed Row

Residential Residential Residential  Buildings Bare Ind./Comm. Roads Bare/Sand Total

Low Density Residential 36 3 39

Residential 1 9 1 1 12

High Density Residential 1 6 7

Commercial Buildings 8 1 9

Commercial Bare 2 3 1 2 2 20

Mixed Industrial/Commercial 1 2 1 5 9

Roads 1 31 32

Bare/Sand 1 25 26

0

Column Total 39 13 10 12 12 7 32 29 154

Producer's Accuracy User's Accuracy

Low Density Residential = 36/39 = 92.31% Low Density Residential = 36/38 = 92.31%
Residential = 913 = 69.23% Residential = 9/12 = 75.00%
High Density Residential = 6/10 = 60.00% _High Density Residential = 6/7 = 87.72%
Commercial Buildings = 8/M2 = 66.66% Commercial Buildings = 89 = 88.89%
Commercial Bare = 1112 = 91.66% Commercial Bare = 11/20 = 55.55%
Mixed Industrial/Commercial = 5/7 = 71.43% Mixed Industrial/lCommerci = 5/9 = 55.55%
Roads = 31/32 = 96.87% Roads = 31/32 = 96.87%
Bare/Sand = 25/29 = 86.21% Bare/Sand = 25/26 = 95.15%

Overall Accuracy for Urban Casses = (36 +9+6+ 8+ 11+ 5+ 31 + 25)/ 154 = 85.06%
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The overall Kappa for urban classes is a little below the overall accuracy for urban classes.

Partial Kappa is high for low density residential, high density residential, commercial buildings,

and roads. The Kappa values for the other urban classes are low, indicating that some of them

are mixed and probably should be merged.

Table 7. Kappa Values for Urban Land Cover Classes

Land Cover Category Kappa
Low Density Residential 0.8764
Residential 0.6186
High Density Residential 0.8503
Commercial Buildings 0.8825
Commercial Bare 0.5240
Mixed Industrial/Commercial 0.5409
Roads 0.9634
Bare/Sand 0.8070
Overall Kappa 0.7954

The prinicipal limitations of our accuracy assessment are due to the relatively small number of

reference pixels for each class and the fact that we could not collect information for other land

cover classes. However, we believe that the results of our accuracy assessment would improve

if we could include more reference pixels. If out of 10 reference pixels one is misclassified by

chance, this can reduce the user’s accuracy by 10 percent.
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SECTION 5: FINAL CLASSIFICATION

RESULTS AND DISCUSSION

All previous sections described the development and application of our classification methods to
a restricted data set that covered the south-east quadrant of the study area. The analyses
conducted on the restricted data set could be refined in many steps and evaluated. We were able
to do this efficiently because we kept the data volume manageable. After we had designed,
evaluated and refined all techniques, we applied them to the entire data set. However, the larger
data set also included a wider range of spectral variation and we had to adjust to the larger data
volume. This process made changes necessary for the unsupervised training. We specified 60
initial clusters in the unsupervised training instead of 40 as described in section 2 of this report.
As a result, we were able to create better signature statistics for urban classes as well as for
some of the wet classes. All other procedures followed the same methodology as described in
previous sections. Attached to this section are two figures that display the Earthsat
classification of the TM image and our final product. Visual comparisons as well as the
previously described accuracy assessment demonstrate the usefulness of resolution merge for
the classification of urban land cover. A major improvement was achieved by combining

remote sensing of satellite imagery with ancillary data sets in a GIS environment using decision-

rule classification.
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NON-APPLE AWARDS
AWARD NAME ORGANIZATION STREET
HP ADVANCED TERRY COOK NATURE CONSERVANCY-TEXAS, THE 711 NAVARRO, SUITE 410 (PO BOX 1440, 78295-1440)
HP ADVANCED SANDY ANDELMAN NATURE CONSERVANCY—-WASHINGTON, THE 217 PINE STREET, SUITE 1100
HP ADVANCED DICK CAMERON FOREST CONSERVATION COUNCIL 140 CHAMISO LANE (or PO BOX 22488, 87502-2488)
HP ADVANCED WILL ALLEN CONSERVATION FUND, SOUTHEAST REGIONAL OFFICE, THE 310 1/2 WEST FRANKLIN STREET (or PO BOX 374)
HP ADVANCED JAMES STRITTHOLT NORTH AMERICAN WILDERNESS RECOVERY INC (THE WILDLANDS PROJECT) 117 EAST FIFTH STREET, SUITE F
HP ADVANCED ED BACKUS PACIFIC GIS 1200 NW FRONT AVENUE, SUITE 470A
HP ADVANCED PETER MORRISON SIERRA BIODIVERSITY INSTITUTE 233A WEST CHEWUCH ROAD
HP BASIC STEPHANIE SERSLI C/O JOHN BYRNE GONCOL FOUNDATION C/O RIVER WATCH 153 STATE STREET
HP BASIC RANDALL HAGENSTEIN NATURE CONSERVANCY--ALASKA, THE 421 W. FIRST AVENUE, SUITE 200
HP BASIC LAURI SOCHL NATURE CONSERVANCY—-SOUTH DAKOTA FIELD OFFICE, THE 1000 WEST AVENUE N, SUITE 100
HP BASIC VICTOR VERA C/O ROGER SAYRE THE NATURE CONSERVANCY - FUND. MOISES BERTONI 1815 NORTH LYNN STREET
HP BASIC STEVE SUTHERLAND NATURE CONSERVANCY—OHIO FIELD OFFICE, THE 1504 WEST FIRST AVENUE
HP BASIC HORST DIETER STEKLIS DIAN FOSSEY GORILLA FUND, THE ANTHO. DEPT. RUTGERS, DOUGLAS CAMPUS, RUTH ADAMS BLDG. 3RD FLOOR
HP BASIC JEFF WATERS LAKE PONTCHARTRAIN BASIN FOUNDATION LAKEWAY 1 STE 820 3900 CAUSEWAY BLVD (PO BOX 6965)
HP BASIC RICK JOHNSON NATURE CONSERVANCY--NEW MEXICO FIELD OFFICE, THE 212 E. MARCY, SUITE 200
HP BASIC JACK HOGG CRAIGHEAD WILDLIFE-WILDLANDS INSTITUTE 5200 UPPER MILLER CREEK ROAD
HP BASIC ISABELLA GRANILLO, WENDY LAIRD CES/PINACATE-ORGAN PIPE CACTUS NATL MON ROUTE |, BOX 100
HP BASIC NICOLE CROMWELL SAVE THE BAY, INC 434 SMITH STREET
HP BASIC BARBARA MILTON CONNECTICUT AUDUBON COASTAL CENTER 1 MILFORD POINT ROAD
HP BASIC JEAN SMITH SOUTHERN ROCKIES ECOSYSTEM PROJ. & THE CO ENVIRON, COAL 777 GRANT STREET, SUITE 606
HP BASIC JEFF KESSLER BIODIVERSITY ASSOCIATES 215 S. THIRD STREET, SUITE 114 (or PO BOX 6032)
PCARCINFO, AV2.1* GLENN SWITKES INTERNATIONAL RIVERS NETWORK 1847 BERKELEY WAY
PCARCINFO, AV2.1* CHRISTI LAMBERT NATURE CONSERVANCY- GA, ALTAMAHA RIVER BIORESERVE 202 BROAD STREET (or PO BOX 484)
PCARCINFO, AV2.1* ROBERT DALLESKE FOREST SENTINELS IN SCIENCE, INC BOX 888-801 OAK STREET
PCARCINFO, AV2.1* GARY PAUL NABHAN ARIZONA-SONORA DESERT MUSEUM 2021 NORTH KINNEY ROAD
PCARCINFO, AV2.1* JUDY BOND KEEPING TRACK, INC WOLFRUN, BENTLEY LANE
PCARCINFO* BRIAN EMBLEY STONY BROOK-MILLSTONE WATERSHED ASSOCIATION 31 TITUS MILL ROAD
PCARCINFO* JULIA SOMERS GREAT SWAMP WATERSHED ASSOCIATION 19 GREEN AVENUE
ARCUSA CD MARK WIMER LOS ANGELES COUNTY BREEDING BIRD ATLAS 900 EXPOSITION BOULEVARD
PLOTTER ONLY CHRISTOPHER KERNAN FAIRCHILD TROPICAL GARDEN 11901 OLD CUTLER ROAD (or 11935 OLD CUTLER ROAD)
PLOTTER ONLY RICHARD WALKER AMERICAN WILDLANDS 40 E. MAIN STREET, SUITE 2
WKSTA ARCINFO* FRED KOONTZ WILDLIFE CONSERVATION SOCIETY 2300 SOUTHERN BOULEVARD




CITY STATE |ZIP COUNTRY PHONE_NO FAX_NUMBER EMAIL

SAN ANTONIO X 78205-1721 USA 210-224-8774 210-228-9805 TERRYC4068@A0L.COM

SEATTLE WA 98101 USA 206-343-4344 206-343-5608 SIAGLTERNET.EDU

SANTA FE NM 87505 USA 505-986-8435 505-820-0079 FCCSW@ROADRUNNER.COM
CHAPEL HILL NC 27516 USA 919-967-2223 919-967-9702 ALLENTCF@AOL COM
MCMINNVILLE OR 97128 | USA 503-434-9848 503-434-2781 STRITT@EARTHDESIGN. COM
PORTLAND OR 97209 USA 503-226-8108 503-226-8110 PACIFICGIS@IGC.APC ORG
WINTHROP WA 98862 USA 509-996-2490 509-996-3778 PMORRISON@IGC.APC ORG
MONTPELIER vT 05602 USA 802-223-3840 3627-311-179 SERSLI@GONCOL.ZPOK.HU
ANCHORAGE AK 99501 USA 907-276-3133 907-276-2584 RHAGENSTEIN@IGC.APC ORG
SIOUX FALLS SD 57104 USA 605-331-0619 605-334-7336 LSOHL@AOL COM

ARLINGTON VA 22209 | USA 703-841-4211 703-841-2722 MOISES@FMB PY

COLUMBUS K OH 43212 USA 614-486-4194 614-486-9772 SSUTHER@FREENET COLUMBUS OH.US
NEW BRUNSWICK NJ 08903-0270 USA 908-932-9351 404-627-7514 STEKLIS@GANDALF RUTGERS EDU
METARIE LA 70009-6965 USA 504-836-2215 504-836-7283 HTTP://WWW BRECHT.COM/SAVEOURLAKE/
SANTA FE NM 87501 USA 505-988-3867 505-988-4095 RJOHNSON@TOGETHER ORG
MISSOULA MT 59803 USA 406-251-3867 406-251-5069 CWWI@SELWAY UMT EDU

AJO AZ 85321 | USA 520-387-7500 520-290-0969 SONORAN@IGC APC.ORG
PROVIDENCE RI 02908 USA 401-272-3540 401-273-7153 SAVEBAY@SAVETHEBAY.ORG
MILFORD CT 06460 USA 203-878-7440 203-876-2813 SBELDEN@DELPHI.COM

DENVER Cco 80203 USA 303-837-8701 303-861-2436 JEAN.SMITH@RMC SIERRACLUB,ORG 303-388-3378
LARAMIE wY 82070 USA 307-742-7978 307-742-7989 JKESSLER@IGC APC.ORG
BERKELEY CA 94703 USA 510-848-1155 510-848-1008 GLENIRN@IGC APC ORG

DARIEN GA 31305-0484 USA 912-437-2161 912-437-2161 CLAMBERT@TNC ORG

McCLOUD CA 96057-0888 USA 916-964-3154 FORSIS@SNOWCREST.NET

TUCSON AZ 85743 USA 520-883-3007 520-883-2500 FPOLLEN@AZSTARNET COM
JERICHO vT 05465 USA 802-899-2023 802-899-1998

PENNINGTON NJ 08534 USA 609-737-3735 609-737-3075

MADISON NJ 07940 USA 201-996-1900 201-996-1009

LOS ANGELES CA 90007 | USA 213-745-2473 213-746-2999 WIMER@BCF USC EDU

MIAMI FL 33156 USA 305-665-2844 305-665-8032 KERNANC@SERVMS FIU.EDU
BOZEMAN MT 59715 USA 406-586-8175 406-586-8242 AMWILD@MCN.NET

BRONX NY 10460 USA 718-220-5156 718-220-7114 WILDLIFE@MORDOR COM






